19 resultados para Detectors.
Resumo:
ALICE (A Large Ion Collider Experiment) is the LHC (Large Hadron Collider) experiment devoted to investigating the strongly interacting matter created in nucleus-nucleus collisions at the LHC energies. The ALICE ITS, Inner Tracking System, consists of six cylindrical layers of silicon detectors with three different technologies; in the outward direction: two layers of pixel detectors, two layers each of drift, and strip detectors. The number of parameters to be determined in the spatial alignment of the 2198 sensor modules of the ITS is about 13,000. The target alignment precision is well below 10 micron in some cases (pixels). The sources of alignment information include survey measurements, and the reconstructed tracks from cosmic rays and from proton-proton collisions. The main track-based alignment method uses the Millepede global approach. An iterative local method was developed and used as well. We present the results obtained for the ITS alignment using about 10^5 charged tracks from cosmic rays that have been collected during summer 2008, with the ALICE solenoidal magnet switched off.
Resumo:
The International Large Detector (ILD) is a concept for a detector at the International Linear Collider, ILC. The ILC will collide electrons and positrons at energies of initially 500 GeV, upgradeable to 1 TeV. The ILC has an ambitious physics program, which will extend and complement that of the Large Hadron Collider (LHC). A hallmark of physics at the ILC is precision. The clean initial state and the comparatively benign environment of a lepton collider are ideally suited to high precision measurements. To take full advantage of the physics potential of ILC places great demands on the detector performance. The design of ILD is driven by these requirements. Excellent calorimetry and tracking are combined to obtain the best possible overall event reconstruction, including the capability to reconstruct individual particles within jets for particle ow calorimetry. This requires excellent spatial resolution for all detector systems. A highly granular calorimeter system is combined with a central tracker which stresses redundancy and efficiency. In addition, efficient reconstruction of secondary vertices and excellent momentum resolution for charged particles are essential for an ILC detector. The interaction region of the ILC is designed to host two detectors, which can be moved into the beam position with a push-pull scheme. The mechanical design of ILD and the overall integration of subdetectors takes these operational conditions into account.
Resumo:
The TOTEM collaboration has developed and tested the first prototype of its Roman Pots to be operated in the LHC. TOTEM Roman Pots contain stacks of 10 silicon detectors with strips oriented in two orthogonal directions. To measure proton scattering angles of a few microradians, the detectors will approach the beam centre to a distance of 10 sigma + 0.5 mm (= 1.3 mm). Dead space near the detector edge is minimised by using two novel "edgeless" detector technologies. The silicon detectors are used both for precise track reconstruction and for triggering. The first full-sized prototypes of both detector technologies as well as their read-out electronics have been developed, built and operated. The tests took place first in a fixed-target muon beam at CERN's SPS, and then in the proton beam-line of the SPS accelerator ring. We present the test beam results demonstrating the successful functionality of the system despite slight technical shortcomings to be improved in the near future.
Resumo:
Silicon strip detectors are fast, cost-effective and have an excellent spatial resolution. They are widely used in many high-energy physics experiments. Modern high energy physics experiments impose harsh operation conditions on the detectors, e.g., of LHC experiments. The high radiation doses cause the detectors to eventually fail as a result of excessive radiation damage. This has led to a need to study radiation tolerance using various techniques. At the same time, a need to operate sensors approaching the end their lifetimes has arisen. The goal of this work is to demonstrate that novel detectors can survive the environment that is foreseen for future high-energy physics experiments. To reach this goal, measurement apparatuses are built. The devices are then used to measure the properties of irradiated detectors. The measurement data are analyzed, and conclusions are drawn. Three measurement apparatuses built as a part of this work are described: two telescopes measuring the tracks of the beam of a particle accelerator and one telescope measuring the tracks of cosmic particles. The telescopes comprise layers of reference detectors providing the reference track, slots for the devices under test, the supporting mechanics, electronics, software, and the trigger system. All three devices work. The differences between these devices are discussed. The reconstruction of the reference tracks and analysis of the device under test are presented. Traditionally, silicon detectors have produced a very clear response to the particles being measured. In the case of detectors nearing the end of their lifefimes, this is no longer true. A new method benefitting from the reference tracks to form clusters is presented. The method provides less biased results compared to the traditional analysis, especially when studying the response of heavily irradiated detectors. Means to avoid false results in demonstrating the particle-finding capabilities of a detector are also discussed. The devices and analysis methods are primarily used to study strip detectors made of Magnetic Czochralski silicon. The detectors studied were irradiated to various fluences prior to measurement. The results show that Magnetic Czochralski silicon has a good radiation tolerance and is suitable for future high-energy physics experiments.