18 resultados para Degeneration.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Parkinson´s disease (PD) is a debilitating age-related neurological disorder that affects various motor skills and can lead to a loss of cognitive functions. The motor symptoms are the result of the progressive degeneration of dopaminergic neurons within the substantia nigra. The factors that influence the pathogenesis and the progression of the neurodegeneration remain mostly unclear. This study investigated the role of various programmed cell death (PCD) pathways, oxidative stress, and glial cells both in dopaminergic neurodegeneration and in the protective action of various drugs. To this end, we exposed dopaminergic neuroblastoma cells (SH-SY5Y cells) to 6-OHDA, which produces oxidative stress and activates various PCD modalities that result in neuronal degeneration. Additionally, to explore the role of glia, we prepared rat midbrain primary mixed-cell cultures containing both neurons and glial cell types such as microglia and astroglia and then exposed the cultures to either MPP plus or lipopolysaccharide. Our results revealed that 6-OHDA activated several PCD pathways including apoptosis, autophagic stress, lysosomal membrane permeabilization, and perhaps paraptosis in SH-SY5Y cells. Furthermore, we found that minocycline protected SH-SY5Y cells from 6-OHDA by inhibiting both apoptotic and non-apoptotic PCD modalities. We also observed an inconsistent neuroprotective effect of various dietary anti-oxidant compounds against 6-OHDA toxicity in vitro in SH-SY5Y cells. Specifically, quercetin and curcumin exerted neuroprotection only within a narrow concentration range and a limited time frame, whereas resveratrol and epigallocatechin 3-gallate provided no protection whatsoever. Lastly, we found that molecules such as amantadine may delay or even halt the neurodegeneration in primary cell cultures by inhibiting the release of neurotoxic factors from overactivated microglia and by enhancing the pro-survival actions of astroglia. Together these data suggest that the strategy of dampening oxidative species with anti-oxidants is less effective than preventing the production of toxic factors such as oxidative and pro-inflammatory molecules by pathologically activated microglia. This would subsequently prevent the activation of various PCD modalities that cause neuronal degeneration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hantaviruses (family Bunyaviridae, genus Hantavirus) are enveloped viruses incorporating a segmented, negative-sense RNA genome. Each hantavirus is carried by its specific host, either a rodent or an insectivore (shrew), in which the infection is asymptomatic and persistent. In humans, hantaviruses cause Hemorrhagic fever with renal syndrome (HFRS) in Eurasia and Hantavirus cardiopulmonary syndrome (HCPS) in the Americas. In Finland, Puumala virus (genus Hantavirus) is the causative agent of NE, a mild form of HFRS. The HFRS-type diseases are often associated with renal failure and proteinuria that might be mechanistically explained by infected kidney tubular cell degeneration in patients. Previously, it has been shown that non-pathogenic hantavirus, Tula virus (TULV), could cause programmed cell death, apoptosis, in cell cultures. This suggested that the infected kidney tubular degeneration could be caused directly by virus replication. In the first paper of this thesis the molecular mechanisms involved in TULV-induced apoptosis was further elucidated. A virus replication-dependent down-regulation of ERK1/2, concomitantly with the induced apoptosis, was identified. In addition, this phenomenon was not restricted to TULV or to non-pathogenic hantaviruses in general since also a pathogenic hantavirus, Seoul virus, could inhibit ERK1/2 activity. Hantaviruses consist of membrane-spanning glycoproteins Gn and Gc, RNA-dependent RNA polymerase (L protein) and nucleocapsid protein N, which encapsidates the viral genome, and thus forms the ribonucleoprotein (RNP). Interaction between the cytoplasmic tails of viral glycoproteins and RNP is assumed to be the only means how viral genetic material is incorporated into infectious virions. In the second paper of this thesis, it was shown by immunoprecipitation that viral glycoproteins and RNP interact in the purified virions. It was further shown that peptides derived from the cytoplasmic tails (CTs) of both Gn and Gc could bind RNP and recombinant N protein. In the fourth paper the cytoplamic tail of Gn but not Gc was shown to interact with genomic RNA. This interaction was probably rather unspecific since binding of Gn-CT with unrelated RNA and even single-stranded DNA were also observed. However, since the RNP consists of both N protein and N protein-encapsidated genomic RNA, it is possible that the viral genome plays a role in packaging of RNPs into virions. On the other hand, the nucleic acid-binding activity of Gn may have importance in the synthesis of viral RNA. Binding sites of Gn-CT with N protein or nucleic acids were also determined by peptide arrays, and they were largely found to overlap. The Gn-CT of hantaviruses contain a conserved zinc finger (ZF) domain with an unknown function. Some viruses need ZFs in entry or post-entry steps of the viral life cycle. Cysteine residues are required for the folding of ZFs by coordinating zinc-ions, and alkylation of these residues can affect virus infectivity. In the third paper, it was shown that purified hantavirions could be inactivated by treatment with cysteine-alkylating reagents, especially N-ethyl maleimide. However, the effect could not be pin-pointed to the ZF of Gn-CT since also other viral proteins reacted with maleimides, and it was, therefore, impossible to exclude the possibility that other cysteines besides those that were essential in the formation of ZF are required for hantavirus infectivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Embryonic midbrain and hindbrain are structures which will give rise to brain stem and cerebellum in the adult vertebrates. Brain stem contains several nuclei which are essential for the regulation of movements and behavior. They include serotonin-producing neurons, which develop in the hindbrain, and dopamine-producing neurons in the ventral midbrain. Degeneration and malfunction of these neurons leads to various neurological disorders, including schizophrenia, depression, Alzheimer s, and Parkinson s disease. Thus, understanding their development is of high interest. During embryogenesis, a local signaling center called isthmic organizer regulates the development of midbrain and anterior hindbrain. It secretes peptides belonging to fibroblast growth factor (FGF) and Wingless/Int (Wnt) families. These factors bind to their receptors in the surrounding tissues, and activate various downstream signaling pathways which lead to alterations in gene expression. This in turn affects the various developmental processes in this region, such as proliferation, survival, patterning, and neuronal differentiation. In this study we have analyzed the role of FGFs in the development of midbrain and anterior hindbrain, by using mouse as a model organism. We show that FGF receptors cooperate to receive isthmic signals, and cell-autonomously promote cell survival, proliferation, and maintenance of neuronal progenitors. FGF signaling is required for the maintenance of Sox3 and Hes1 expression in progenitors, and Hes1 in turn suppresses the activity of proneural genes. Loss of Hes1 is correlated with increased cell cycle exit and premature neuronal differentiation. We further demonstrate that FGF8 protein forms an antero-posterior gradient in the basal lamina, and might enter the neuronal progenitors via their basal processes. We also analyze the impact of FGF signaling on the various neuronal nuclei in midbrain and hindbrain. Rostral serotonergic neurons appear to require high levels of FGF signaling in order to develop. In the absence of FGF signaling, these neurons are absent. We also show that embryonic meso-diencephalic dopaminergic domain consists of two populations in the anterior-posterior direction, and that these populations display different molecular profiles. The anterior diencephalic domain appears less dependent on isthmic FGFs, and lack several genes typical of midbrain dopaminergic neurons, such as Pitx3 and DAT. In Fgfr compound mutants, midbrain dopaminergic neurons begin to develop but soon adopt characteristics which highly resemble those of diencephalic dopaminergic precursors. Our results indicate that FGF signaling regulates patterning of these two domains cell-autonomously.