24 resultados para Clustering algorithms
Resumo:
This paper investigates the clustering pattern in the Finnish stock market. Using trading volume and time as factors capturing the clustering pattern in the market, the Keim and Madhavan (1996) and the Engle and Russell (1998) model provide the framework for the analysis. The descriptive and the parametric analysis provide evidences that an important determinant of the famous U-shape pattern in the market is the rate of information arrivals as measured by large trading volumes and durations at the market open and close. Precisely, 1) the larger the trading volume, the greater the impact on prices both in the short and the long run, thus prices will differ across quantities. 2) Large trading volume is a non-linear function of price changes in the long run. 3) Arrival times are positively autocorrelated, indicating a clustering pattern and 4) Information arrivals as approximated by durations are negatively related to trading flow.
Resumo:
An edge dominating set for a graph G is a set D of edges such that each edge of G is in D or adjacent to at least one edge in D. This work studies deterministic distributed approximation algorithms for finding minimum-size edge dominating sets. The focus is on anonymous port-numbered networks: there are no unique identifiers, but a node of degree d can refer to its neighbours by integers 1, 2, ..., d. The present work shows that in the port-numbering model, edge dominating sets can be approximated as follows: in d-regular graphs, to within 4 − 6/(d + 1) for an odd d and to within 4 − 2/d for an even d; and in graphs with maximum degree Δ, to within 4 − 2/(Δ − 1) for an odd Δ and to within 4 − 2/Δ for an even Δ. These approximation ratios are tight for all values of d and Δ: there are matching lower bounds.
Resumo:
We present a distributed algorithm that finds a maximal edge packing in O(Δ + log* W) synchronous communication rounds in a weighted graph, independent of the number of nodes in the network; here Δ is the maximum degree of the graph and W is the maximum weight. As a direct application, we have a distributed 2-approximation algorithm for minimum-weight vertex cover, with the same running time. We also show how to find an f-approximation of minimum-weight set cover in O(f2k2 + fk log* W) rounds; here k is the maximum size of a subset in the set cover instance, f is the maximum frequency of an element, and W is the maximum weight of a subset. The algorithms are deterministic, and they can be applied in anonymous networks.
Resumo:
A local algorithm with local horizon r is a distributed algorithm that runs in r synchronous communication rounds; here r is a constant that does not depend on the size of the network. As a consequence, the output of a node in a local algorithm only depends on the input within r hops from the node. We give tight bounds on the local horizon for a class of local algorithms for combinatorial problems on unit-disk graphs (UDGs). Most of our bounds are due to a refined analysis of existing approaches, while others are obtained by suggesting new algorithms. The algorithms we consider are based on network decompositions guided by a rectangular tiling of the plane. The algorithms are applied to matching, independent set, graph colouring, vertex cover, and dominating set. We also study local algorithms on quasi-UDGs, which are a popular generalisation of UDGs, aimed at more realistic modelling of communication between the network nodes. Analysing the local algorithms on quasi-UDGs allows one to assume that the nodes know their coordinates only approximately, up to an additive error. Despite the localisation error, the quality of the solution to problems on quasi-UDGs remains the same as for the case of UDGs with perfect location awareness. We analyse the increase in the local horizon that comes along with moving from UDGs to quasi-UDGs.
Resumo:
Bayesian networks are compact, flexible, and interpretable representations of a joint distribution. When the network structure is unknown but there are observational data at hand, one can try to learn the network structure. This is called structure discovery. This thesis contributes to two areas of structure discovery in Bayesian networks: space--time tradeoffs and learning ancestor relations. The fastest exact algorithms for structure discovery in Bayesian networks are based on dynamic programming and use excessive amounts of space. Motivated by the space usage, several schemes for trading space against time are presented. These schemes are presented in a general setting for a class of computational problems called permutation problems; structure discovery in Bayesian networks is seen as a challenging variant of the permutation problems. The main contribution in the area of the space--time tradeoffs is the partial order approach, in which the standard dynamic programming algorithm is extended to run over partial orders. In particular, a certain family of partial orders called parallel bucket orders is considered. A partial order scheme that provably yields an optimal space--time tradeoff within parallel bucket orders is presented. Also practical issues concerning parallel bucket orders are discussed. Learning ancestor relations, that is, directed paths between nodes, is motivated by the need for robust summaries of the network structures when there are unobserved nodes at work. Ancestor relations are nonmodular features and hence learning them is more difficult than modular features. A dynamic programming algorithm is presented for computing posterior probabilities of ancestor relations exactly. Empirical tests suggest that ancestor relations can be learned from observational data almost as accurately as arcs even in the presence of unobserved nodes.