17 resultados para Cayley graphs
Resumo:
This work studies decision problems from the perspective of nondeterministic distributed algorithms. For a yes-instance there must exist a proof that can be verified with a distributed algorithm: all nodes must accept a valid proof, and at least one node must reject an invalid proof. We focus on locally checkable proofs that can be verified with a constant-time distributed algorithm. For example, it is easy to prove that a graph is bipartite: the locally checkable proof gives a 2-colouring of the graph, which only takes 1 bit per node. However, it is more difficult to prove that a graph is not bipartite—it turns out that any locally checkable proof requires Ω(log n) bits per node. In this work we classify graph problems according to their local proof complexity, i.e., how many bits per node are needed in a locally checkable proof. We establish tight or near-tight results for classical graph properties such as the chromatic number. We show that the proof complexities form a natural hierarchy of complexity classes: for many classical graph problems, the proof complexity is either 0, Θ(1), Θ(log n), or poly(n) bits per node. Among the most difficult graph properties are symmetric graphs, which require Ω(n2) bits per node, and non-3-colourable graphs, which require Ω(n2/log n) bits per node—any pure graph property admits a trivial proof of size O(n2).
Resumo:
We study the following problem: given a geometric graph G and an integer k, determine if G has a planar spanning subgraph (with the original embedding and straight-line edges) such that all nodes have degree at least k. If G is a unit disk graph, the problem is trivial to solve for k = 1. We show that even the slightest deviation from the trivial case (e.g., quasi unit disk graphs or k = 1) leads to NP-hard problems.