23 resultados para Brazilian pepper tree


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new deterministic three-dimensional neutral and charged particle transport code, MultiTrans, has been developed. In the novel approach, the adaptive tree multigrid technique is used in conjunction with simplified spherical harmonics approximation of the Boltzmann transport equation. The development of the new radiation transport code started in the framework of the Finnish boron neutron capture therapy (BNCT) project. Since the application of the MultiTrans code to BNCT dose planning problems, the testing and development of the MultiTrans code has continued in conventional radiotherapy and reactor physics applications. In this thesis, an overview of different numerical radiation transport methods is first given. Special features of the simplified spherical harmonics method and the adaptive tree multigrid technique are then reviewed. The usefulness of the new MultiTrans code has been indicated by verifying and validating the code performance for different types of neutral and charged particle transport problems, reported in separate publications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis studies the tree species’ juvenile diversity in cacao (Theobroma cacao L.) based agroforestry and in primary forest in a natural conservation forest environment of Lore Lindu National Park, Sulawesi, Indonesia. Species’ adult composition in Lore Lindu National Park is relatively well studied, less is known about tree species’ diversity in seedling communities particularly in frequently disturbed cacao agroforestry field environment. Cacao production forms a potentially serious thread for maintaining the conservation areas pristine and forested in Sulawesi. The impacts of cacao production on natural environment are directly linked to the diversity and abundance of shade tree usage. The study aims at comparing differences between cacao agroforestry and natural forest in the surrounding area in their species composition in seedling and sapling size categories. The study was carried out in two parts. Biodiversity inventory of seedlings and saplings was combined with social survey with farmer interviews. Aim of the survey was to gain knowledge of the cacao fields, and farmers’ observations and choices regarding tree species associated with cacao. Data was collected in summer 2008. The assessment of the impact of environmental factors of solar radiation, weeding frequency, cacao tree planting density, distance to forest and distance to main park road, and type of habitat on seedling and sapling compositions was done with Non-metric Multidimensional Scaling (NMS). Outlier analysis was used to assess distorting variables for NMS, and Multi-Response Permutation Procedures (MRPP) analysis to differentiate the impact of categorical variables. Sampling success was estimated with rarefaction curves and jackknife estimate of species richness. In the inventory 135 species of trees and shrubs were found. Only some agroforestry related species were dominating. The most species rich were sapling communities in forest habitat. NMS was showing generally low linear correlation between variation of species composition and environmental variables. Solar radiation was having most significance as explaining variable. The most clearly separated in ordination were cacao and forest habitats. The results of seedling and sapling inventory were only partly coinciding with farmers’ knowledge of the tree species occurring on their fields. More research with frequent assessment of seedling cohorts is needed due to natural variability of cohorts and high mortality rate of seedlings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work examines stable isotope ratios of carbon, oxygen and hydrogen in annual growth rings of trees. Isotopic composition in wood cellulose is used as a tool to study past climate. The method benefits from the accurate and precise dating provided by dendrochronology. In this study the origin, nature and the strength of climatic correlations are studied on different temporal scales and at different sites in Finland. The origin of carbon isotopic signal is in photosynthetic fractionation. The basic physical and chemical fractionations involved are reasonably well understood. This was confirmed by measuring instantaneous photosynthetic discrimination on Scots pine (Pinus sylvestris L.). The internal conductance of CO2 was recognized to have a significant impact on the observed fractionation, and further investigations are suggested to quantify its role in controlling the isotopic signal of photosynthates. Isotopic composition of the produced biomass can potentially be affected by variety of external factors that induce physiological changes in trees. Response of carbon isotopic signal in tree ring cellulose to changes in resource availability was assessed in a manipulation experiment. It showed that the signal was relatively stable despite of changes in water and nitrogen availability to the tree. Palaeoclimatic reconstructions are typically based on functions describing empirical relationship between isotopic and climatic parameters. These empirical relationships may change depending on the site conditions, species and timeframe studied. Annual variation in Scots pine tree ring carbon and oxygen isotopic composition was studied in northern and in central eastern Finland and annual variation in tree ring latewood carbon, oxygen and hydrogen isotopic ratio in Oak (Quercus robur L.) was studied in southern Finland. In all of the studied sites at least one of the studied isotope ratios was shown to record climate strongly enough to be used in climatic reconstructions. Using the observed relationships, four-century-long climate reconstructions from living Scots pine were created for northern and central eastern Finland. Also temporal stability of the relationships between three proxy indicators, tree ring growth and carbon and oxygen isotopic composition was studied during the four-hundred-year period. Isotope ratios measured from tree rings in Finland were shown to be sensitive indicators of climate. Increasing understanding of environmental controls and physiological mechanisms affecting tree ring isotopic composition will make possible more accurate interpretation of isotope data. This study also demonstrated that by measuring multiple isotopes and physical proxies from the same tree rings, additional information on tree physiology can be obtained. Thus isotopic ratios measured from tree ring cellulose provide means to improve the reliability of climate reconstructions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Forest certification has been put forward as a means to improve the sustainability of forest management in the tropical countries, where traditional environmental regulation has been inefficient in controlling forest degradation and deforestation. In these countries, the role of communities as managers of the forest resources is rapidly increasing. However, only a fraction of tropical community forests have been certified and little is known about the impacts of certification in these systems. Two areas in Honduras where community-managed forest operations had received FSC certifications were studied. Río Cangrejal represents an area with a longer history of use, whereas Copén is a more recent forest operation. Ecological sustainability was assessed through comparing timber tree regeneration and floristic composition between certified, conventionally managed and natural forests. Data on woody vegetation and environmental conditions was collected within logging gaps and natural treefall gaps. The regeneration success of shade-tolerant timber tree species was lower in certified than in conventionally managed forests in Río Cangrejal. Furthermore, the floristic composition was more natural-like in the conventionally managed than the certified forests. However, the environmental conditions indicated reduced logging disturbance in the certified forests. Data from Copén demonstrated that the regeneration success of light-demanding timber species was higher in the certified than the unlogged forests. In spite of this, the most valuable timber species Swietenia macrophylla was not regenerating successfully in the certified forests, due to rapid gap closure. The results indicate that pre-certification loggings and forest fragmentation may have a stronger impact on forest regeneration than current, certified management practices. The focus in community forests under low-intensive logging should be directed toward landscape connectivity and the restoration of degraded timber species, instead of reducing mechanical logging damage. Such actions are dependent on better recognition of resource rights, and improving the status of small Southern producers in the markets of certified wood products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phlebiopsis gigantea has been for a long time known as a strong competitor against Heterobasidion annosum and intensively applied as a biological control agent on stump surfaces of Picea abies in Fennoscandia. However, the mechanism underlying its antagonistic activity is still unknown. A primary concern is the possible impact of P. gigantea treatment on resident non-target microbial biota of conifer stumps. Additional risk factor is the potential of P. gigantea to acquire a necrotrophic habit through adaptation to living wood tissues. This study focused on the differential screening of several P. gigantea isolates from diverse geographical sources as well as the use of breeding approach to enhance the biocontrol efficacy against H. annosum infection. The results showed a significant positive correlation between growth rate in wood and high biocontrol efficacy. Furthermore, with aid of breeding approach, several progeny strains were obtained that had better growth rate and control efficacy than parental isolates. To address the issue of the potential of P. gigantea to acquire necrotrophic capability, a combination of histochemical, molecular and transcript profiling (454 sequencing) were used to investigate the interactions between these two fungi and ten year old P. sylvestris seedlings. The results revealed that both P. gigantea and H. annosum provoked strong necrotic lesions, but after prolonged incubation, P. gigantea lesions shrank and ceased to expand further. Tree seedlings pre-treated with P. gigantea further restricted H. annosum-induced necrosis and had elevated transcript levels of genes important for lignification, cell death regulation and jasmonic acid signalling. These suggest that induced localized resistance is a contributory factor for the biocontrol efficacy of P.gigantea, and it has a comparatively limited necrotrophic capability than H. annosum. Finally, to investigate the potential impact of P. gigantea on the stump bacterial biota, 16S rDNA isolated from tissue samples from stumps of P. abies after 1-, 6- and 13-year post treatment was sequenced using bar-coded 454 Titanium pyrosequencing. Proteobacteria were found to be the most abundant at the initial stages of stump decay but were selectively replaced by Acidobacteria at advanced stages of the decay. Moreover, P. gigantea treatment significantly decreased the bacterial richness at initial decay stage in the stumps. Over time, the bacterial community in the stumps gradually recovered and the negative effects of P. gigantea was attenuated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fire is an important driver of the boreal forest ecosystem, and a useful tool for the restoration of degraded forests. However, we lack knowledge on the ecological processes initiated by prescribed fires, and whether they bring about the desired restoration effects. The purpose of this study was to investigate the impacts of low-intensity experimental prescribed fires on four ecological processes in young commercial Scots pine (Pinus sylvestris) stands eight years after the burning. The processes of interest were tree mortality, dead wood creation, regeneration and fire scar formation. These were inventoried in twelve study plots, which were 30 m x 30 m in size. The plots belonged to two different stand age classes: 30-35 years or 45 years old at the time of burning. The study was partly a follow-up of study plots researched by Sidoroff et al. (2007) one year after burning in 2003. Tree mortality increased from 183 stems ha-1 in 2003 to 259 stems ha-1 in 2010, corresponding to 15 % and 21 % of stem number respectively. Most mortality was experienced in the stands of the younger age class, in smaller diameter classes and among species other than Scots pine. By 2010, the average mortality of Scots pine per plot was 18%, but varied greatly ranging from 0% to 63% of stem number. Delayed mortality, i.e. mortality that occurred between 2 and 8 years after fire, seemed to become more important with increasing diameter. The input of dead wood also varied greatly between plots, from none to 72 m3 ha-1, averaging at 12 m3 ha-1. The amount of fire scarred trees per plot ranged from none to 20 %. Four out of twelve plots (43 %) did not have any fire scars. Scars were on average small: 95% of scars were less than 4 cm in width, and 75% less than 40 cm in length. Owing to the light nature of the fire, the remaining overstorey and thick organic layer, regeneration was poor overall. The abundance of pine and other seedlings indicated a viable seed source existed, but the seedlings failed to establish under dense canopy. The number of saplings ranged from 0 to 12 333 stems ha-1. The results of this study indicate that a low intensity fire does not necessarily initiate the ecological processes of tree mortality, dead wood creation and regeneration in the desired scale. Fire scars, which form the basis of fire dating in fire history studies, did not form in all cases.