17 resultados para Banana cultivars


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nurmiheinien merkitys maailmanlaajuisesti on merkittävä, sillä noin 69 % maapallon peltopinta-alasta on pysyvää laidunmaata tai niittyä. Suomessa nurmien osuus on noin 29 %, ja tuotanto perustuu pääosin intensiiviseen säilörehuntuotantoon. Yleisin nurmiheinälaji Suomessa on timotei (Phleum pratense ssp. pratense L.). Timotei on talvenkestävä ja soveltuu siksi pohjoisiin kasvuoloihin. Timoteilajikkeita jalostettaessa pohjoista alkuperää olevia vanhempaislinjoja käytetään hyvän talvenkestävyyden varmistamiseksi, eteläisiä tavoiteltaessa nopeaa kasvurytmiä. Ilmaston muutoksen ennustetaan lisäävän erilaisia äärioloja kuten myrskyjä ja sateita. Vuorokauden keskilämpötila nousee ja kasvukausi pidentyy. Lisäksi talvet muuttuvat sateisemmiksi. Muutokset näkyvät erityisesti pohjoisissa kasvuympäristöissä. Tutkimuksessa haluttiinkin selvittää eri alkuperää edustavien timoteilajikkeiden ja linjojen kylmänkestävyyttä, kasvu-, ja kehitysnopeutta sekä vernalisaation vaikutusta. Lisäksi tutkittiin syysviljojen vernalisaatiovasteen mittaamiseen käytettyjen menetelmien soveltuvuutta nurmille. Tutkimukseen kuului kaksivuotinen peltokoe sekä kasvatuskaappikoe. Vernalisaatio nopeutti timotein kasvua ja kehitystä. Tutkimuksen perusteella eteläistä alkuperää olevilla lajikkeilla kasvu- ja kukintavalmius oli olemassa ilman vernalisaatiota. Pohjoisilla lajikkeilla oli suurempi vernalisaatiovaste ja niiden kukkiminen ja kasvu nopeutui vernalisaation myötä. Vernalisaatiolla oli vaikutusta myös kasvuston rakenteeseen. Generatiivisten versojen määrä lisääntyi vernalisaation myötä, kun taas vegetatiivisten versojen määrä väheni. Kylmänkestävyys oli tutkimuksen perusteella riippuvainen syksyn karaistumisjakson pituudesta sekä jakson lämpösummasta (FH-COLD). Korkea keskilämpötila ja lyhyt karaistumisjakso heikensivät kylmänkestävyyttä. Vastaavasti karaistumiskauden lämpötilan ollessa välillä 0 °C:ta ja + 5 °C:ta ja jakson pituuden kasvaessa kylmänkestävyys lisääntyi. Tutkimuksen perusteella vernalisaatiolla oli selvä vaikutus timotein kasvuun ja kehitykseen. Pohjoista alkuperää olevat timoteit reagoivat vernalisaatioon eteläisiä enemmän. Osa pohjoisista linjoista vaati vernalisaation generatiivisten versojen muodostumiseen. Syysviljojen vernalisaatiovasteen mittausmenetelmät soveltuvat osin myös puhtaiden timoteilajikkeiden vernalisaation seurantaan.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Context. Turbulent fluxes of angular momentum and heat due to rotationally affected convection play a key role in determining differential rotation of stars. Aims. We compute turbulent angular momentum and heat transport as functions of the rotation rate from stratified convection. We compare results from spherical and Cartesian models in the same parameter regime in order to study whether restricted geometry introduces artefacts into the results. Methods. We employ direct numerical simulations of turbulent convection in spherical and Cartesian geometries. In order to alleviate the computational cost in the spherical runs and to reach as high spatial resolution as possible, we model only parts of the latitude and longitude. The rotational influence, measured by the Coriolis number or inverse Rossby number, is varied from zero to roughly seven, which is the regime that is likely to be realised in the solar convection zone. Cartesian simulations are performed in overlapping parameter regimes. Results. For slow rotation we find that the radial and latitudinal turbulent angular momentum fluxes are directed inward and equatorward, respectively. In the rapid rotation regime the radial flux changes sign in accordance with earlier numerical results, but in contradiction with theory. The latitudinal flux remains mostly equatorward and develops a maximum close to the equator. In Cartesian simulations this peak can be explained by the strong 'banana cells'. Their effect in the spherical case does not appear to be as large. The latitudinal heat flux is mostly equatorward for slow rotation but changes sign for rapid rotation. Longitudinal heat flux is always in the retrograde direction. The rotation profiles vary from anti-solar (slow equator) for slow and intermediate rotation to solar-like (fast equator) for rapid rotation. The solar-like profiles are dominated by the Taylor-Proudman balance.