22 resultados para BLOOD SUBSTITUTES


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. Patients with type 1 diabetes are at markedly increased risk of vascular complications. In this respect it is noteworthy that hyperglycaemia that is shown to cause endothelial dysfunction, has clearly been shown to be a risk factor for diabetic microvascular disease. However, the role of hyperglycaemia as a predictor of macrovascular disease is not as clear as for microvascular disease, although type 1 diabetes itself increases the risk of cardiovascular disease substantially. Furthermore, it is not known whether it is the short-term or the long-term hyperglycaemia that confers possible risk. In addition, the role of glucose variability as a predictor of complications is to a large extent unexplored. Interestingly, although hyperglycaemia increases the risk of pre-eclampsia in women with type 1 diabetes, it is unclear whether pre-eclampsia, a condition characterized by endothelial dysfunction, is also a risk factor for microvascular complication, diabetic nephropathy. Aims. This doctoral thesis investigated the role of acute hyperglycaemia and glucose variability on arterial stiffness and cardiac ventricular repolarisation in male patients with type 1 diabetes as well as in healthy male volunteers. The thesis also explored whether acute hyperglycaemia leads to an inflammatory response, endothelial dysfunction and oxidative stress. Finally, the role of pre-eclampsia, as a predictor of diabetic nephropathy in type 1 diabetes was examined. Subjects and methods. In order to study glucose variability and the daily glycaemic control, 22 male patients with type 1 diabetes, without any diabetic complications, were monitored for 72-h with a continuous glucose monitoring system. At the end of the 72-h glucose monitoring period a 2-h hyperglycaemic clamp was performed both in the patients with type 1 diabetes and in the 13 healthy age-matched male volunteers. Blood pressure, arterial stiffness and QT time were measured to detect vascular changes during acute hyperglycaemia. Blood samples were drawn at baseline (normoglycaemia) and during acute hyperglycaemia. In another patient sample, women with type 1 diabetes were followed during their pregnancy and restudied eleven years later to elucidate the role of pre-eclampsia and pregnancy-induced hypertension as potential risk factors for diabetic nephropathy. Results and conclusions. Acute hyperglycaemia increased arterial stiffness as well as caused a disturbance in the myocardial ventricular repolarisation, emphasizing the importance of a strict daily glycaemic control in male patients with type 1 diabetes. An inflammatory response was also observed during acute hyperglycaemia. Furthermore, a high mean daily blood glucose but not glucose variability per se is associated with arterial stiffness. While glucose variability in turn correlated with central blood pressure, the results suggest that the glucose metabolism is closely linked to the haemodynamic changes in male patients with uncomplicated type 1 diabetes. Notably, the results are not directly applicable to females. Finally, a history of a pre-eclamptic pregnancy, but not pregnancy-induced hypertension was associated with increased risk of diabetic nephropathy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monocarboxylate transporters (MCTs) transport lactate and protons across cell membranes. During intense exercise, lactate and protons accumulate in the exercising muscle and are transported to the plasma. In the horse, MCTs are responsible for the majority of lactate and proton removal from exercising muscle, and are therefore also the main mechanism to hinder the decline in pH in muscle cells. Two isoforms, MCT1 and MCT4, which need an ancillary protein CD147, are expressed in equine muscle. In the horse, as in other species, MCT1 is predominantly expressed in oxidative fibres, where its likely role is to transport lactate into the fibre to be used as a fuel at rest and during light work, and to remove lactate during intensive exercise when anaerobic energy production is needed. The expression of CD147 follows the fibre type distribution of MCT1. These proteins were detected in both the cytoplasm and sarcolemma of muscle cells in the horse breeds studied: Standardbred and Coldblood trotters. In humans, training increases the expression of both MCT1 and MCT4. In this study, the proportion of oxidative fibres in the muscle of Norwegian-Swedish Coldblood trotters increased with training. Simultaneously, the expression of MCT1 and CD147, measured immunohistochemically, seemed to increase more in the cytoplasm of oxidative fibres than in the fast fibre type IIB. Horse MCT4 antibody failed to work in immunohistochemistry. In the future, a quantitative method should be introduced to examine the effect of training on muscle MCT expression in the horse. Lactate can be taken up from plasma by red blood cells (RBCs). In horses, two isoforms, MCT1 and MCT2, and the ancillary protein CD147 are expressed in RBC membranes. The horse is the only species studied in which RBCs have been found to express MCT2, and the physiological role of this protein in RBCs is unknown. The majority of horses express all three proteins, but 10-20% of horses express little or no MCT1 or CD147. This leads to large interindividual variation in the capacity to transport lactate into RBCs. Here, the expression level of MCT1 and CD147 was bimodally distributed in three studied horse breeds: Finnhorse, Standardbred and Thoroughbred. The level of MCT2 expression was distributed unimodally. The expression level of lactate transporters could not be linked to performance markers in Thoroughbred racehorses. In the future, better performance indexes should be developed to better enable the assessment of whether the level of MCT expression affects athletic performance. In human subjects, several mutations in MCT1 have been shown to cause decreased lactate transport activity in muscle and signs of myopathy. In the horse, two amino acid sequence variations, one of which was novel, were detected in MCT1 (V432I and K457Q). The mutations found in horses were in different areas compared to mutations found in humans. One mutation (M125V) was detected in CD147. The mutations found could not be linked with exercise-induced myopathy. MCT4 cDNA was sequenced for the first time in the horse, but no mutations could be detected in this protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monocarboxylate transporters (MCTs), especially the isoforms MCT1 - MCT4, cotransport lactate and protons across the cell membranes. They are thus essential for pH regulation and homeostasis in glycolytic cells such as red blood cells (RBCs), and skeletal muscle cells during intense exercise. In 70% of the Standardbred horses the lactate transport activity (TA) in RBCs is high and transport is mediated mainly by MCTs. In the rest 30% of the Standardbreds MCT mediated transport route is not active and the TA is low. MCTs need an ancillary protein for their proper localization and functioning in the plasma membrane. The ancillary protein for MCT1 and MCT4 is a member of immunoglobulin superfamily, CD147. Here we determined the expression of MCT isoforms and CD147 in equine RBCs and gluteal muscle. We sequenced the cDNA of horse MCT1 and CD147 to achieve horse-specific antibodies and to reveal sequence variations that may affect the TA of RBCs. The amount of MCT1 and CD147 mRNA in muscle were also studied. ---- In all, 73 horses representing different breeds were used. Blood samples were drawn from the jugular vein and muscle samples were taken either from gluteal muscle using biopsy needle or during castration from expendable cremaster muscle. The TA of RBCs was studied using radiolabeled lactate and the amount of MCT isoforms and CD147 in the plasma membranes using Western blotting. The level of mRNA in muscle cells was determined using qPCR. Isoforms MCT1 and MCT2 were found in the RBCs and isoforms MCT1 and MCT4 in the muscle cells of horses. The TA of RBCs was dependent on the expression of CD147 and MCT1 in the plasma membrane. Sequence variations were found in the cDNA of both MCT1 and CD147, but they did not explain the inactivity of MCT1 mediated transport route. The single nucleotide polymorphism (SNP) Met125Val in CD147 that existed parallel with an SNP in 3´-untranslated region explained, however, attenuation in CD147 expression in Standardbreds. A single mutation Ile51Val also decreased the expression of CD147 in one Warmblood. The MCT1 and CD147 mRNA concentrations in the gluteal muscle were higher in horses with higher MCT1 and CD147 expression in RBCs and lower in horses with minor expression of CD147 and MCT1. This suggests that the bimodal distribution of TA is due to differences in transcriptional regulation that is functioning in parallel in MCT1 and CD147 gene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hypertension is one of the major risk factors for cardiovascular morbidity. The advantages of antihypertensive therapy have been clearly demonstrated, but only about 30% of hypertensive patients have their blood pressure (BP) controlled by such treatment. One of the reasons for this poor BP control may lie in the difficulty in predicting BP response to antihypertensive treatment. The average BP reduction achieved is similar for each drug in the main classes of antihypertensive agents, but there is a marked individual variation in BP responses to any given drug. The purpose of the present study was to examine BP response to four different antihypertensive monotherapies with regard to demographic characteristics, laboratory test results and common genetic polymorphisms. The subjects of the present study are participants in the pharmacogenetic GENRES Study. A total of 208 subjects completed the whole study protocol including four drug treatment periods of four weeks, separated by four-week placebo periods. The study drugs were amlodipine, bisoprolol, hydrochlorothiazide and losartan. Both office (OBP) and 24-hour ambulatory blood pressure (ABP) measurements were carried out. BP response to study drugs were related to basic clinical characteristics, pretreatment laboratory test results and common polymorphisms in genes coding for components of the renin-angiotensin system, alpha-adducin (ADD1), beta1-adrenergic receptor (ADRB1) and beta2-adrenergic receptor (ADRB2). Age was positively correlated with BP responses to amlodipine and with OBP and systolic ABP responses to hydrochlorothiazide, while body mass index was negatively correlated with ABP responses to amlodipine. Of the laboratory test results, plasma renin activity (PRA) correlated positively with BP responses to losartan, with ABP responses to bisoprolol, and negatively with ABP responses to hydrochlorothiazide. Uniquely to this study, it was found that serum total calcium level was negatively correlated with BP responses to amlodipine, whilst serum total cholesterol level was negatively correlated with ABP responses to amlodipine. There were no significant associations of angiotensin II type I receptor 1166A/C, angiotensin converting enzyme I/D, angiotensinogen Met235Thr, ADD1 Gly460Trp, ADRB1 Ser49Gly and Gly389Arg and ADRB2 Arg16Gly and Gln27Glu polymorphisms with BP responses to the study drugs. In conclusion, this study confirmed the relationship between pretreatment PRA levels and response to three classes of antihypertensive drugs. This study is the first to note a significant inverse relation between serum calcium level and responsiveness to a calcium channel blocker. However, this study could not replicate the observations that common polymorphisms in angiotensin II type I receptor, angiotensin converting enzyme, angiotensinogen, ADD1, ADRB1, or ADRB2 genes can predict BP response to antihypertensive drugs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The blood-brain barrier (BBB) is a unique barrier that strictly regulates the entry of endogenous substrates and xenobiotics into the brain. This is due to its tight junctions and the array of transporters and metabolic enzymes that are expressed. The determination of brain concentrations in vivo is difficult, laborious and expensive which means that there is interest in developing predictive tools of brain distribution. Predicting brain concentrations is important even in early drug development to ensure efficacy of central nervous system (CNS) targeted drugs and safety of non-CNS drugs. The literature review covers the most common current in vitro, in vivo and in silico methods of studying transport into the brain, concentrating on transporter effects. The consequences of efflux mediated by p-glycoprotein, the most widely characterized transporter expressed at the BBB, is also discussed. The aim of the experimental study was to build a pharmacokinetic (PK) model to describe p-glycoprotein substrate drug concentrations in the brain using commonly measured in vivo parameters of brain distribution. The possibility of replacing in vivo parameter values with their in vitro counterparts was also studied. All data for the study was taken from the literature. A simple 2-compartment PK model was built using the Stella™ software. Brain concentrations of morphine, loperamide and quinidine were simulated and compared with published studies. Correlation of in vitro measured efflux ratio (ER) from different studies was evaluated in addition to studying correlation between in vitro and in vivo measured ER. A Stella™ model was also constructed to simulate an in vitro transcellular monolayer experiment, to study the sensitivity of measured ER to changes in passive permeability and Michaelis-Menten kinetic parameter values. Interspecies differences in rats and mice were investigated with regards to brain permeability and drug binding in brain tissue. Although the PK brain model was able to capture the concentration-time profiles for all 3 compounds in both brain and plasma and performed fairly well for morphine, for quinidine it underestimated and for loperamide it overestimated brain concentrations. Because the ratio of concentrations in brain and blood is dependent on the ER, it is suggested that the variable values cited for this parameter and its inaccuracy could be one explanation for the failure of predictions. Validation of the model with more compounds is needed to draw further conclusions. In vitro ER showed variable correlation between studies, indicating variability due to experimental factors such as test concentration, but overall differences were small. Good correlation between in vitro and in vivo ER at low concentrations supports the possibility of using of in vitro ER in the PK model. The in vitro simulation illustrated that in the simulation setting, efflux is significant only with low passive permeability, which highlights the fact that the cell model used to measure ER must have low enough paracellular permeability to correctly mimic the in vivo situation.