17 resultados para Ammonium aminofluoride


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years urban hydrology and individual urban streams have been in focus and subjects to research also in Helsinki. However, until now there has been lack of research covering simultaneously the whole area of the city of Helsinki. The aim of this study was to find out the general state of water quality in small urban streams in the city of Helsinki. 21 streams were studied: Mätäjoki, Korppaanoja, Mätäpuro, Näsinoja-Tuomarinkylänoja, Tuomarinkartanonpuro, Kumpulanpuro, Tapaninkylänpuro, Tapaninvainionpuro, Puistolanpuro, Longinoja, Säynäslahdenpuro, Viikinoja, Porolahdenpuro, Mustapuro, Marjaniemenpuro, Mellunkylänpuro, Vuosaarenpuro, Rastilanpuro, Ramsinkannaksenpuro, Skatanpuro and Yliskylänpuro. Water samples were collected from 48 sampling points, each stream having at least one point. Four water samples were collected from each point, sampling periods being 9.-11.2., 26.-28.4., 29.6.-1.7. and 25.-27.10.2004. Field measurements associated with water sampling included water temperature, oxygen concentration, pH and electrical conductivity. Water samples were analysed in the Laboratory of Physical Geography in the University of Helsinki and in the Environmental Laboratory of the City of Helsinki Environment Centre for following properties: suspended solids, dissolved substances, alkalinity, principal anions and cations (Na+, K+, Mg2+, Ca2+, F-, Cl-, NO3-, PO43- and SO42-), colour, turbidity, biological and chemical oxygen demand (BOD7 and CODMn-values), nutrient concentrations and bacterial indicators of hygienic quality. The main water quality issues found in this study were low oxygen levels in many streams and poor hygienic quality at least occasionally. E.g. in summer oxygen levels were under 60 % in every stream. Amount of total dissolved substances and nutrients were high in some of the streams studied. Compared to other Finnish streams the values of alkalinity and pH were higher. Although these problems were common, the variation between different streams and sampling points was significant. This was probably due to local conditions. Best overall water quality was found in Mätäpuro and Tuomarinkartanonpuro streams. Seasonal variation was evident in almost all water quality properties. For example the total amount of dissolved substances was largest in winter and decreased during the year. Colour and turbidity were smallest in winter and increased towards the end of the year. The same was true for suspended solids, which had smallest concentration in winter and greatest in autumn. It must be kept in mind that the spring samples were collected after the spring flood otherwise the largest suspended solid concentrations would have been expected in spring. Finnish general water quality classification was used to assess the quality of urban stream waters. Its suitability for small urban streams is not, however, completely trouble-free. This classification does not take into account the quick changes in such small streams but evaluates only the yearly mean values. This can oversimplify the picture of the water quality situation in the streams. Also in order to better reflect the urban environment the analysed water quality properties should also include total dissolved substances and e.g. concentrations of chloride and sodium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Benthic processes were measured at a coastal deposition area in the northern Baltic Sea, covering all seasons. The N-2 production rates, 90-400 mu mol N m(-2) d(-1), were highest in autumn-early winter and lowest in spring. Heterotrophic bacterial production peaked unexpectedly late in the year, indicating that in addition to the temperature, the availability of carbon compounds suitable for the heterotrophic bacteria also plays a major role in regulating the denitrification rate. Anaerobic ammonium oxidation (anammox) was measured in spring and autumn and contributed 10% and 15%, respectively, to the total N-2 production. The low percentage did, however, result in a significant error in the total N-2 production rate estimate, calculated using the isotope pairing technique. Anammox must be taken into account in the Gulf of Finland in future sediment nitrogen cycling research.