45 resultados para AEROSOL
Resumo:
Volatile organic compounds (VOCs) have a great influence on tropospheric chemistry; they affect ozone formation and they or their reaction products are able to take part in secondary organic aerosol formation; some of the VOCs are themselves toxic. Knowing the concentrations and sources of different reactive volatile organic compounds is essential for the development of ozone control strategies and for studies of secondary organic aerosol formation. The objective of this work was to study volatile organic compounds in urban air, develop and validate determination methods for them, characterize their concentrations and estimate the contributions of different VOC sources. Of the different compound groups detected in the urban air of Helsinki, alkanes were found to have the highest concentrations, but when the concentrations were scaled against the reactivity with hydroxyl radicals (OH), aromatic hydrocarbons and alkenes were found to have the greatest effect on local chemistry. Comparisons with rural sites showed that concentrations at Utö and Hyytiälä were generally lower than those in Helsinki, especially for the alkenes and aromatic hydrocarbons, but concentrations of halogenated hydrocarbons at Utö and carbonyls at Hyytiälä were at the same level as in Helsinki. Most halogenated hydrocarbons do not have any significant sources in Helsinki, and carbonyls are formed in the atmosphere in the reactions of other VOCs, and are therefore also produced in other than urban areas. At Hyytiälä carbonyls were found to have an important role in the local chemistry. The contribution of carbonyls as an OH sink was higher than that of the monoterpenes and aromatic hydrocarbons. Based on the emission profile and concentration measurements, the contributions of different sources were estimated at urban (Helsinki) and residential (Järvenpää) sites using a chemical mass balance (CMB) receptor model. It was shown that it is possible to apply CMB in the case of a large number of different compounds with different properties. According to the CMB analysis, the major sources for these VOCs in Helsinki were traffic and distant sources. At the residential site in Järvenpää, the contribution due to traffic was minor, while distant sources, liquid gasoline and wood combustion made higher contributions. It was also shown that wood combustion can be an important source at some locations of VOCs usually considered as traffic-related compounds (e.g., benzene).
Resumo:
Comprehensive two-dimensional gas chromatography (GC×GC) offers enhanced separation efficiency, reliability in qualitative and quantitative analysis, capability to detect low quantities, and information on the whole sample and its components. These features are essential in the analysis of complex samples, in which the number of compounds may be large or the analytes of interest are present at trace level. This study involved the development of instrumentation, data analysis programs and methodologies for GC×GC and their application in studies on qualitative and quantitative aspects of GC×GC analysis. Environmental samples were used as model samples. Instrumental development comprised the construction of three versions of a semi-rotating cryogenic modulator in which modulation was based on two-step cryogenic trapping with continuously flowing carbon dioxide as coolant. Two-step trapping was achieved by rotating the nozzle spraying the carbon dioxide with a motor. The fastest rotation and highest modulation frequency were achieved with a permanent magnetic motor, and modulation was most accurate when the motor was controlled with a microcontroller containing a quartz crystal. Heated wire resistors were unnecessary for the desorption step when liquid carbon dioxide was used as coolant. With use of the modulators developed in this study, the narrowest peaks were 75 ms at base. Three data analysis programs were developed allowing basic, comparison and identification operations. Basic operations enabled the visualisation of two-dimensional plots and the determination of retention times, peak heights and volumes. The overlaying feature in the comparison program allowed easy comparison of 2D plots. An automated identification procedure based on mass spectra and retention parameters allowed the qualitative analysis of data obtained by GC×GC and time-of-flight mass spectrometry. In the methodological development, sample preparation (extraction and clean-up) and GC×GC methods were developed for the analysis of atmospheric aerosol and sediment samples. Dynamic sonication assisted extraction was well suited for atmospheric aerosols collected on a filter. A clean-up procedure utilising normal phase liquid chromatography with ultra violet detection worked well in the removal of aliphatic hydrocarbons from a sediment extract. GC×GC with flame ionisation detection or quadrupole mass spectrometry provided good reliability in the qualitative analysis of target analytes. However, GC×GC with time-of-flight mass spectrometry was needed in the analysis of unknowns. The automated identification procedure that was developed was efficient in the analysis of large data files, but manual search and analyst knowledge are invaluable as well. Quantitative analysis was examined in terms of calibration procedures and the effect of matrix compounds on GC×GC separation. In addition to calibration in GC×GC with summed peak areas or peak volumes, simplified area calibration based on normal GC signal can be used to quantify compounds in samples analysed by GC×GC so long as certain qualitative and quantitative prerequisites are met. In a study of the effect of matrix compounds on GC×GC separation, it was shown that quality of the separation of PAHs is not significantly disturbed by the amount of matrix and quantitativeness suffers only slightly in the presence of matrix and when the amount of target compounds is low. The benefits of GC×GC in the analysis of complex samples easily overcome some minor drawbacks of the technique. The developed instrumentation and methodologies performed well for environmental samples, but they could also be applied for other complex samples.
Resumo:
Aerosol particles can cause detrimental environmental and health effects. The particles and their precursor gases are emitted from various anthropogenic and natural sources. It is important to know the origin and properties of aerosols to efficiently reduce their harmful effects. The diameter of aerosol particles (Dp) varies between ~0.001 and ~100 μm. Fine particles (PM2.5: Dp < 2.5 μm) are especially interesting because they are the most harmful and can be transported over long distances. The aim of this thesis is to study the impact on air quality by pollution episodes of long-range transported aerosols affecting the composition of the boundary-layer atmosphere in remote and relatively unpolluted regions of the world. The sources and physicochemical properties of aerosols were investigated in detail, based on various measurements (1) in southern Finland during selected long-range transport (LRT) pollution episodes and unpolluted periods and (2) over the Atlantic Ocean between Europe and Antarctica during a voyage. Furthermore, the frequency of LRT pollution episodes of fine particles in southern Finland was investigated over a period of 8 years, using long-term air quality monitoring data. In southern Finland, the annual mean PM2.5 mass concentrations were low but LRT caused high peaks of daily mean concentrations every year. At an urban background site in Helsinki, the updated WHO guideline value (24-h PM2.5 mean 25 μg/m3) was exceeded during 1-7 LRT episodes each year during 1999-2006. The daily mean concentrations varied between 25 and 49 μg/m3 during the episodes, which was 3-6 times higher than the mean concentration in the long term. The in-depth studies of selected LRT episodes in southern Finland revealed that biomass burning in agricultural fields and wildfires, occurring mainly in Eastern Europe, deteriorated air quality on a continental scale. The strongest LRT episodes of fine particles resulted from open biomass-burning fires but the emissions from other anthropogenic sources in Eastern Europe also caused significant LRT episodes. Particle mass and number concentrations increased strongly in the accumulation mode (Dp ~ 0.09-1 μm) during the LRT episodes. However, the concentrations of smaller particles (Dp < 0.09 μm) remained low or even decreased due to the uptake of vapours and molecular clusters by LRT particles. The chemical analysis of individual particles showed that the proportions of several anthropogenic particle types increased (e.g. tar balls, metal oxides/hydroxides, spherical silicate fly ash particles and various calcium-rich particles) in southern Finland during an LRT episode, when aerosols originated from the polluted regions of Eastern Europe and some open biomass-burning smoke was also brought in by LRT. During unpolluted periods when air masses arrived from the north, the proportions of marine aerosols increased. In unpolluted rural regions of southern Finland, both accumulation mode particles and small-sized (Dp ~ 1-3 μm) coarse mode particles originated mostly from LRT. However, the composition of particles was totally different in these size fractions. In both size fractions, strong internal mixing of chemical components was typical for LRT particles. Thus, the aging of particles has significant impacts on their chemical, hygroscopic and optical properties, which can largely alter the environmental and health effects of LRT aerosols. Over the Atlantic Ocean, the individual particle composition of small-sized (Dp ~ 1-3 μm) coarse mode particles was affected by continental aerosol plumes to distances of at least 100-1000 km from the coast (e.g. pollutants from industrialized Europe, desert dust from the Sahara and biomass-burning aerosols near the Gulf of Guinea). The rate of chloride depletion from sea-salt particles was high near the coasts of Europe and Africa when air masses arrived from polluted continental regions. Thus, the LRT of continental aerosols had significant impacts on the composition of the marine boundary-layer atmosphere and seawater. In conclusion, integration of the results obtained using different measurement techniques captured the large spatial and temporal variability of aerosols as observed at terrestrial and marine sites, and assisted in establishing the causal link between land-bound emissions, LRT and air quality.
Resumo:
There is a growing need to understand the exchange processes of momentum, heat and mass between an urban surface and the atmosphere as they affect our quality of life. Understanding the source/sink strengths as well as the mixing mechanisms of air pollutants is particularly important due to their effects on human health and climate. This work aims to improve our understanding of these surface-atmosphere interactions based on the analysis of measurements carried out in Helsinki, Finland. The vertical exchange of momentum, heat, carbon dioxide (CO2) and aerosol particle number was measured with the eddy covariance technique at the urban measurement station SMEAR III, where the concentrations of ultrafine, accumulation mode and coarse particle numbers, nitrogen oxides (NOx), carbon monoxide (CO), ozone (O3) and sulphur dioxide (SO2) were also measured. These measurements were carried out over varying measurement periods between 2004 and 2008. In addition, black carbon mass concentration was measured at the Helsinki Metropolitan Area Council site during three campaigns in 1996-2005. Thus, the analyzed dataset covered far, the most comprehensive long-term measurements of turbulent fluxes reported in the literature from urban areas. Moreover, simultaneously measured urban air pollution concentrations and turbulent fluxes were examined for the first time. The complex measurement surrounding enabled us to study the effect of different urban covers on the exchange processes from a single point of measurement. The sensible and latent heat fluxes closely followed the intensity of solar radiation, and the sensible heat flux always exceeded the latent heat flux due to anthropogenic heat emissions and the conversion of solar radiation to direct heat in urban structures. This urban heat island effect was most evident during winter nights. The effect of land use cover was seen as increased sensible heat fluxes in more built-up areas than in areas with high vegetation cover. Both aerosol particle and CO2 exchanges were largely affected by road traffic, and the highest diurnal fluxes reached 109 m-2 s-1 and 20 µmol m-2 s-1, respectively, in the direction of the road. Local road traffic had the greatest effect on ultrafine particle concentrations, whereas meteorological variables were more important for accumulation mode and coarse particle concentrations. The measurement surroundings of the SMEAR III station served as a source for both particles and CO2, except in summer, when the vegetation uptake of CO2 exceeded the anthropogenic sources in the vegetation sector in daytime, and we observed a downward median flux of 8 µmol m-2 s-1. This work improved our understanding of the interactions between an urban surface and the atmosphere in a city located at high latitudes in a semi-continental climate. The results can be utilised in urban planning, as the fraction of vegetation cover and vehicular activity were found to be the major environmental drivers affecting most of the exchange processes. However, in order to understand these exchange and mixing processes on a city scale, more measurements above various urban surfaces accompanied by numerical modelling are required.
Resumo:
Aerosol particles play a role in the earth ecosystem and affect human health. A significant pathway of producing aerosol particles in the atmosphere is new particle formation, where condensable vapours nucleate and these newly formed clusters grow by condensation and coagulation. However, this phenomenon is still not fully understood. This thesis brings an insight to new particle formation from an experimental point of view. Laboratory experiments were conducted both on the nucleation process and physicochemical properties related to new particle formation. Nucleation rate measurements are used to test nucleation theories. These theories, in turn, are used to predict nucleation rates in atmospheric conditions. However, the nucleation rate measurements have proven quite difficult to conduct, as different devices can yield nucleation rates with differences of several orders of magnitude for the same substances. In this thesis, work has been done to have a greater understanding in nucleation measurements, especially those conducted in a laminar flow diffusion chamber. Systematic studies of nucleation were also made for future verification of nucleation theories. Surface tensions and densities of substances related to atmospheric new particle formation were measured. Ternary sulphuric acid + ammonia + water is a proposed candidate to participate in atmospheric nucleation. Surface tensions of an alternative candidate to nucleate in boreal forest areas, sulphuric acid + dimethylamine + water, were also measured. Binary compounds, consisting of organic acids + water are possible candidates to participate in the early growth of freshly nucleated particles. All the measured surface tensions and densities were fitted with equations, thermodynamically consistent if possible, to be easily applied to atmospheric model calculations of nucleation and subsequent evolution of particle size.
Resumo:
Solar ultraviolet (UV) radiation has a broad range of effects concerning life on Earth. Soon after the mid-1980s, it was recognized that the stratospheric ozone content was declining over large areas of the globe. Because the stratospheric ozone layer protects life on Earth from harmful UV radiation, this lead to concern about possible changes in the UV radiation due to anthropogenic activity. Initiated by this concern, many stations for monitoring of the surface UV radiation were founded in the late 1980s and early 1990s. As a consequence, there is an apparent lack of information on UV radiation further in the past: measurements cannot tell us how the UV radiation levels have changed on time scales of, for instance, several decades. The aim of this thesis was to improve our understanding of past variations in the surface UV radiation by developing techniques for UV reconstruction. Such techniques utilize commonly available meteorological data together with measurements of the total ozone column for reconstructing, or estimating, the amount of UV radiation reaching Earth's surface in the past. Two different techniques for UV reconstruction were developed. Both are based on first calculating the clear-sky UV radiation using a radiative transfer model. The clear-sky value is then corrected for the effect of clouds based on either (i) sunshine duration or (ii) pyranometer measurements. Both techniques account also for the variations in the surface albedo caused by snow, whereas aerosols are included as a typical climatological aerosol load. Using these methods, long time series of reconstructed UV radiation were produced for five European locations, namely Sodankylä and Jokioinen in Finland, Bergen in Norway, Norrköping in Sweden, and Davos in Switzerland. Both UV reconstruction techniques developed in this thesis account for the greater part of the factors affecting the amount of UV radiation reaching the Earth's surface. Thus, they are considered reliable and trustworthy, as suggested also by the good performance of the methods. The pyranometer-based method shows better performance than the sunshine-based method, especially for daily values. For monthly values, the difference between the performances of the methods is smaller, indicating that the sunshine-based method is roughly as good as the pyranometer-based for assessing long-term changes in the surface UV radiation. The time series of reconstructed UV radiation produced in this thesis provide new insight into the past UV radiation climate and how the UV radiation has varied throughout the years. Especially the sunshine-based UV time series, extending back to 1926 and 1950 at Davos and Sodankylä, respectively, also put the recent changes driven by the ozone decline observed over the last few decades into perspective. At Davos, the reconstructed UV over the period 1926-2003 shows considerable variation throughout the entire period, with high values in the mid-1940s, early 1960s, and in the 1990s. Moreover, the variations prior to 1980 were found to be caused primarily by variations in the cloudiness, while the increase of 4.5 %/decade over the period 1979-1999 was supported by both the decline in the total ozone column and changes in the cloudiness. Of the other stations included in this work, both Sodankylä and Norrköping show a clear increase in the UV radiation since the early 1980s (3-4 %/decade), driven primarily by changes in the cloudiness, and to a lesser extent by the diminution of the total ozone. At Jokioinen, a weak increase was found, while at Bergen there was no considerable overall change in the UV radiation level.
Resumo:
A better understanding of the limiting step in a first order phase transition, the nucleation process, is of major importance to a variety of scientific fields ranging from atmospheric sciences to nanotechnology and even to cosmology. This is due to the fact that in most phase transitions the new phase is separated from the mother phase by a free energy barrier. This barrier is crossed in a process called nucleation. Nowadays it is considered that a significant fraction of all atmospheric particles is produced by vapor-to liquid nucleation. In atmospheric sciences, as well as in other scientific fields, the theoretical treatment of nucleation is mostly based on a theory known as the Classical Nucleation Theory. However, the Classical Nucleation Theory is known to have only a limited success in predicting the rate at which vapor-to-liquid nucleation takes place at given conditions. This thesis studies the unary homogeneous vapor-to-liquid nucleation from a statistical mechanics viewpoint. We apply Monte Carlo simulations of molecular clusters to calculate the free energy barrier separating the vapor and liquid phases and compare our results against the laboratory measurements and Classical Nucleation Theory predictions. According to our results, the work of adding a monomer to a cluster in equilibrium vapour is accurately described by the liquid drop model applied by the Classical Nucleation Theory, once the clusters are larger than some threshold size. The threshold cluster sizes contain only a few or some tens of molecules depending on the interaction potential and temperature. However, the error made in modeling the smallest of clusters as liquid drops results in an erroneous absolute value for the cluster work of formation throughout the size range, as predicted by the McGraw-Laaksonen scaling law. By calculating correction factors to Classical Nucleation Theory predictions for the nucleation barriers of argon and water, we show that the corrected predictions produce nucleation rates that are in good comparison with experiments. For the smallest clusters, the deviation between the simulation results and the liquid drop values are accurately modelled by the low order virial coefficients at modest temperatures and vapour densities, or in other words, in the validity range of the non-interacting cluster theory by Frenkel, Band and Bilj. Our results do not indicate a need for a size dependent replacement free energy correction. The results also indicate that Classical Nucleation Theory predicts the size of the critical cluster correctly. We also presents a new method for the calculation of the equilibrium vapour density, surface tension size dependence and planar surface tension directly from cluster simulations. We also show how the size dependence of the cluster surface tension in equimolar surface is a function of virial coefficients, a result confirmed by our cluster simulations.
Resumo:
Aerosols impact the planet and our daily lives through various effects, perhaps most notably those related to their climatic and health-related consequences. While there are several primary particle sources, secondary new particle formation from precursor vapors is also known to be a frequent, global phenomenon. Nevertheless, the formation mechanism of new particles, as well as the vapors participating in the process, remain a mystery. This thesis consists of studies on new particle formation specifically from the point of view of numerical modeling. A dependence of formation rate of 3 nm particles on the sulphuric acid concentration to the power of 1-2 has been observed. This suggests nucleation mechanism to be of first or second order with respect to the sulphuric acid concentration, in other words the mechanisms based on activation or kinetic collision of clusters. However, model studies have had difficulties in replicating the small exponents observed in nature. The work done in this thesis indicates that the exponents may be lowered by the participation of a co-condensing (and potentially nucleating) low-volatility organic vapor, or by increasing the assumed size of the critical clusters. On the other hand, the presented new and more accurate method for determining the exponent indicates high diurnal variability. Additionally, these studies included several semi-empirical nucleation rate parameterizations as well as a detailed investigation of the analysis used to determine the apparent particle formation rate. Due to their high proportion of the earth's surface area, oceans could potentially prove to be climatically significant sources of secondary particles. In the lack of marine observation data, new particle formation events in a coastal region were parameterized and studied. Since the formation mechanism is believed to be similar, the new parameterization was applied in a marine scenario. The work showed that marine CCN production is feasible in the presence of additional vapors contributing to particle growth. Finally, a new method to estimate concentrations of condensing organics was developed. The algorithm utilizes a Markov chain Monte Carlo method to determine the required combination of vapor concentrations by comparing a measured particle size distribution with one from an aerosol dynamics process model. The evaluation indicated excellent agreement against model data, and initial results with field data appear sound as well.
Resumo:
Atmospheric aerosol particles have significant climatic effects. Secondary new particle formation is a globally important source of these particles. Currently, the mechanisms of particle formation and the vapours participating in this process are, however, not truly understood. The recently developed Neutral cluster and Air Ion Spectrometer (NAIS) was widely used in field studies of atmospheric particle formation. The NAIS was calibrated and found to be in adequate agreement with the reference instruments. It was concluded that NAIS can be reliably used to measure ions and particles near the sizes where the atmospheric particle formation begins. The main focus of this thesis was to study new particle formation and participation of ions in this process. To attain this objective, particle and ion formation and growth rates were studied in various environments - at several field sites in Europe, in previously rarely studied sites in Antarctica and Siberia and also in an indoor environment. New particle formation was observed at all sites were studied and the observations were used as indicatives of the particle formation mechanisms. Particle size-dependent growth rates and nucleation mode hygroscopic growth factors were examined to obtain information on the particle growth. It was found that the atmospheric ions participate in the initial steps of new particle formation, although their contribution was minor in the boundary layer. The highest atmospheric particle formation rates were observed at the most polluted sites where the role of ions was the least pronounced. Furthermore, the increase of particle growth rate with size suggested that enhancement of the growth by ions was negligible. Participation of organic vapours in the particle growth was supported by laboratory and field observations. It was addressed that secondary new particle formation can also be a significant source of indoor air particles. These results, extending over a wide variety of environments, give support to previous observations and increase understanding on new particle formation on a global scale.
Resumo:
The planet Mars is the Earth's neighbour in the Solar System. Planetary research stems from a fundamental need to explore our surroundings, typical for mankind. Manned missions to Mars are already being planned, and understanding the environment to which the astronauts would be exposed is of utmost importance for a successful mission. Information of the Martian environment given by models is already now used in designing the landers and orbiters sent to the red planet. In particular, studies of the Martian atmosphere are crucial for instrument design, entry, descent and landing system design, landing site selection, and aerobraking calculations. Research of planetary atmospheres can also contribute to atmospheric studies of the Earth via model testing and development of parameterizations: even after decades of modeling the Earth's atmosphere, we are still far from perfect weather predictions. On a global level, Mars has also been experiencing climate change. The aerosol effect is one of the largest unknowns in the present terrestrial climate change studies, and the role of aerosol particles in any climate is fundamental: studies of climate variations on another planet can help us better understand our own global change. In this thesis I have used an atmospheric column model for Mars to study the behaviour of the lowest layer of the atmosphere, the planetary boundary layer (PBL), and I have developed nucleation (particle formation) models for Martian conditions. The models were also coupled to study, for example, fog formation in the PBL. The PBL is perhaps the most significant part of the atmosphere for landers and humans, since we live in it and experience its state, for example, as gusty winds, nightfrost, and fogs. However, PBL modelling in weather prediction models is still a difficult task. Mars hosts a variety of cloud types, mainly composed of water ice particles, but also CO2 ice clouds form in the very cold polar night and at high altitudes elsewhere. Nucleation is the first step in particle formation, and always includes a phase transition. Cloud crystals on Mars form from vapour to ice on ubiquitous, suspended dust particles. Clouds on Mars have a small radiative effect in the present climate, but it may have been more important in the past. This thesis represents an attempt to model the Martian atmosphere at the smallest scales with high resolution. The models used and developed during the course of the research are useful tools for developing and testing parameterizations for larger-scale models all the way up to global climate models, since the small-scale models can describe processes that in the large-scale models are reduced to subgrid (not explicitly resolved) scale.
Resumo:
Atmospheric aerosol particles affect the global climate as well as human health. In this thesis, formation of nanometer sized atmospheric aerosol particles and their subsequent growth was observed to occur all around the world. Typical formation rate of 3 nm particles at varied from 0.01 to 10 cm-3s-1. One order of magnitude higher formation rates were detected in urban environment. Highest formation rates up to 105 cm-3s-1 were detected in coastal areas and in industrial pollution plumes. Subsequent growth rates varied from 0.01 to 20 nm h-1. Smallest growth rates were observed in polar areas and the largest in the polluted urban environment. This was probably due to competition between growth by condensation and loss by coagulation. Observed growth rates were used in the calculation of a proxy condensable vapour concentration and its source rate in vastly different environments from pristine Antarctica to polluted India. Estimated concentrations varied only 2 orders of magnitude, but the source rates for the vapours varied up to 4 orders of magnitude. Highest source rates were in New Delhi and lowest were in the Antarctica. Indirect methods were applied to study the growth of freshly formed particles in the atmosphere. Also a newly developed Water Condensation Particle Counter, TSI 3785, was found to be a potential candidate to detect water solubility and thus indirectly composition of atmospheric ultra-fine particles. Based on indirect methods, the relative roles of sulphuric acid, non-volatile material and coagulation were investigated in rural Melpitz, Germany. Condensation of non-volatile material explained 20-40% and sulphuric acid the most of the remaining growth up to a point, when nucleation mode reached 10 to 20 nm in diameter. Coagulation contributed typically less than 5%. Furthermore, hygroscopicity measurements were applied to detect the contribution of water soluble and insoluble components in Athens. During more polluted days, the water soluble components contributed more to the growth. During less anthropogenic influence, non-soluble compounds explained a larger fraction of the growth. In addition, long range transport to a measurement station in Finland in a relatively polluted air mass was found to affect the hygroscopicity of the particles. This aging could have implications to cloud formation far away from the pollution sources.
Resumo:
The conversion of a metastable phase into a thermodynamically stable phase takes place via the formation of clusters. Clusters of different sizes are formed spontaneously within the metastable mother phase, but only those larger than a certain size, called the critical size, will end up growing into a new phase. There are two types of nucleation: homogeneous, where the clusters appear in a uniform phase, and heterogeneous, when pre-existing surfaces are available and clusters form on them. The nucleation of aerosol particles from gas-phase molecules is connected not only with inorganic compounds, but also with nonvolatile organic substances found in atmosphere. The question is which ones of the myriad of organic species have the right properties and are able to participate in nucleation phenomena. This thesis discusses both homogeneous and heterogeneous nucleation, having as theoretical tool the classical nucleation theory (CNT) based on thermodynamics. Different classes of organics are investigated. The members of the first class are four dicarboxylic acids (succinic, glutaric, malonic and adipic). They can be found in both the gas and particulate phases, and represent good candidates for the aerosol formation due to their low vapor pressure and solubility. Their influence on the nucleation process has not been largely investigated in the literature and it is not fully established. The accuracy of the CNT predictions for binary water-dicarboxylic acid systems depends significantly on the good knowledge of the thermophysical properties of the organics and their aqueous solutions. A large part of the thesis is dedicated to this issue. We have shown that homogeneous and heterogeneous nucleation of succinic, glutaric and malonic acids in combination with water is unlikely to happen in atmospheric conditions. However, it seems that adipic acid could participate in the nucleation process in conditions occurring in the upper troposphere. The second class of organics is represented by n-nonane and n-propanol. Their thermophysical properties are well established, and experiments on these substances have been performed. The experimental data of binary homogeneous and heterogeneous nucleation have been compared with the theoretical predictions. Although the n-nonane - n-propanol mixture is far from being ideal, CNT seems to behave fairly well, especially when calculating the cluster composition. In the case of heterogeneous nucleation, it has been found that better characterization of the substrate - liquid interaction by means of line tension and microscopic contact angle leads to a significant improvement of the CNT prediction. Unfortunately, this can not be achieved without well defined experimental data.
Resumo:
Atmospheric aerosol particles have a significant impact on air quality, human health and global climate. The climatic effects of secondary aerosol are currently among the largest uncertainties limiting the scientific understanding of future and past climate changes. To better estimate the climatic importance of secondary aerosol particles, detailed information on atmospheric particle formation mechanisms and the vapours forming the aerosol is required. In this thesis we studied these issues by applying novel instrumentation in a boreal forest to obtain direct information on the very first steps of atmospheric nucleation and particle growth. Additionally, we used detailed laboratory experiments and process modelling to determine condensational growth properties, such as saturation vapour pressures, of dicarboxylic acids, which are organic acids often found in atmospheric samples. Based on our studies, we came to four main conclusions: 1) In the boreal forest region, both sulphurous compounds and organics are needed for secondary particle formation, the previous contributing mainly to particle formation and latter to growth; 2) A persistent pool of molecular clusters, both neutral and charged, is present and participates in atmospheric nucleation processes in boreal forests; 3) Neutral particle formation seems to dominate over ion-mediated mechanisms, at least in the boreal forest boundary layer; 4) The subcooled liquid phase saturation vapour pressures of C3-C9 dicarboxylic acids are of the order of 1e-5 1e-3 Pa at atmospheric temperatures, indicating that a mixed pre-existing particulate phase is required for their condensation in atmospheric conditions. The work presented in this thesis gives tools to better quantify the aerosol source provided by secondary aerosol formation. The results are particularly useful when estimating, for instance, anthropogenic versus biogenic influences and the fractions of secondary aerosol formation explained by neutral or ion-mediated nucleation mechanisms, at least in environments where the average particle formation rates are of the order of some tens of particles per cubic centimeter or lower. However, as the factors driving secondary particle formation are likely to vary depending on the environment, measurements on atmospheric nucleation and particle growth are needed from around the world to be able to better describe the secondary particle formation, and assess its climatic effects on a global scale.
Resumo:
A novel method for functional lung imaging was introduced by adapting the K-edge subtraction method (KES) to in vivo studies of small animals. In this method two synchrotron radiation energies, which bracket the K-edge of the contrast agent, are used for simultaneous recording of absorption-contrast images. Stable xenon gas is used as the contrast agent, and imaging is performed in projection or computed tomography (CT) mode. Subtraction of the two images yields the distribution of xenon, while removing practically all features due to other structures, and the xenon density can be calculated quantitatively. Because the images are recorded simultaneously, there are no movement artifacts in the subtraction image. Time resolution for a series of CT images is one image/s, which allows functional studies. Voxel size is 0.1mm3, which is an order better than in traditional lung imaging methods. KES imaging technique was used in studies of ventilation distribution and the effects of histamine-induced airway narrowing in healthy, mechanically ventilated, and anaesthetized rabbits. First, the effect of tidal volume on ventilation was studied, and the results show that an increase in tidal volume without an increase in minute ventilation results a proportional increase in regional ventilation. Second, spiral CT was used to quantify the airspace volumes in lungs in normal conditions and after histamine aerosol inhalation, and the results showed large patchy filling defects in peripheral lungs following histamine provocation. Third, the kinetics of proximal and distal airway response to histamine aerosol were examined, and the findings show that the distal airways react immediately to histamine and start to recover, while the reaction and the recovery in proximal airways is slower. Fourth, the fractal dimensions of lungs was studied, and it was found that the fractal dimension is higher at the apical part of the lungs compared to the basal part, indicating structural differences between apical and basal lung level. These results provide new insights to lung function and the effects of drug challenge studies. Nowadays the technique is available at synchrotron radiation facilities, but the compact synchrotron radiation sources are being developed, and in relatively near future the method may be used at hospitals.
Resumo:
Atmospheric aerosol particle formation events can be a significant source for tropospheric aerosols and thus influence the radiative properties and cloud cover of the atmosphere. This thesis investigates the analysis of aerosol size distribution data containing particle formation events, describes the methodology of the analysis and presents time series data measured inside the Boreal forest. This thesis presents a methodology to identify regional-scale particle formation, and to derive the basic characteristics such as growth and formation rates. The methodology can also be used to estimate concentration and source rates of the vapour causing particle growth. Particle formation was found to occur frequently in the boreal forest area over areas covering up to hundreds of kilometers. Particle formation rates of boreal events were found to be of the order of 0.01-5 cm^-3 s^-1, while the nucleation rates of 1 nm particles can be a few orders of magnitude higher. The growth rates of over 3 nm sized particles were of the order of a few nanometers per hour. The vapor concentration needed to sustain such growth is of the order of 10^7--10^8 cm^-3, approximately one order of magnitude higher than sulphuric acid concentrations found in the atmosphere. Therefore, one has to assume that other vapours, such as organics, have a key role in growing newborn particles to sizes where they can become climatically active. Formation event occurrence shows a clear annual variation with peaks in summer and autumns. This variation is similar to the variation exhibited the obtained formation rates of particles. The growth rate, on the other hand, reaches its highest values during summer. This difference in the annual behavior, and the fact that no coupling between the growth and formation process could be identified, suggest that these processes might be different ones, and that both are needed for a particle formation burst to be observed.