268 resultados para Gerald R. Ford Library


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tutkielmassa sovelletaan aineiston edustavuutta mittaavaa laatuindikaattoria Suomen uhritutkimuspilottiin tilanteessa, jossa ilmenee vastauskatoa. Vastauskato on kasvava ongelma tilastotutkimuksissa: jos tutkimukseen osallistuneet eivät edusta otosjoukkoa tutkittavan asian suhteen, voi vastauskadosta aiheutuva harha olla estimoiduissa tunnusluvuissa hyvinkin suuri. Tutkimuksissa näkee usein julkaistavan vastausasteen ikään kuin se kertoisi aukottomasti tutkimuksen laadusta. Pelkkä korkea vastausaste ei kuitenkaan välttämättä takaa estimaattien harhattomuutta, sillä se ei kerro mitään vastanneiden ja vastaamattomien eroista tutkittavan asian suhteen. Tarvitaan siis muita mittareita, joilla vastanneiden laatua voitaisiin paremmin arvioida, ja R-indikaattori tarjoaa yhden vaihtoehdon. R-indikaattori mittaa otosalkioiden vastausalttiuksien välistä vaihtelua. R-indikaattorin estimoiminen edellyttää siis vastausalttiuksien estimointia, mikä puolestaan edellyttää apumuuttujien olemassaoloa kaikille otosalkioille. Vastausalttiuksien estimoimiseen käytettiin linkkifunktiona sekä logistista mallia että ja Särndalin ja Lundst¶min (2008) vastausvaikutusten mallia. Vastauskäyttäytymiseen vaikuttavan apumuuttujajoukon valinta tehtiin alan kirjallisuuteen perustuen (Groves & Couper 1998). Koska R-indikaattorin estimaattori on satunnaismuuttuja, täytyi sille estimoida varianssi ja mahdollinen harha (Shlomo ym. 2009). Estimoinnissa käytettiin Bootstrap-pseudotoistomenetelmää, jossa alkupe¤isestä aineistosta poimitaan niin kutsuttuja pseudo-otoksia, joiden avulla R-indikaattorin estimaattorille voidaan laskea keskivirhe. Suomen uhritutkimuspilotti koostui kolmesta eri tiedonkeruumenetelmällä poimitusta otoksesta: CAPI-, CATI- CAVVIotoksesta. Vastausasteet vaihtelivat aineistoissa paljon, mutta R-indikaattorin estimaatit olivat kaikille aineistoille liki samat. Suurempi vastausaste ei siis merkinnyt parempaa edustavuutta. Lisäksi CAVVI-aineistossa muistutusviestein ja -kirjein suoritettu vastausasteen kasvattaminen huononsi edustavuutta R-indikaattorin näkökulmasta. Mielivaltainen vastausasteen kasvattaminen ei siis ole välttämättä perusteltua. R-indikaattorin estimaattorin ominaisuuksien osalta empiiriset tulokset vahvistivat RISQ-projektin aiempia tutkimustuloksia. Estimaattorin arvo oli sitä pienempi mitä enemmän vastausalttiuden mallissa oli selittäjiä, koska tällöin vastausalttiuksien varianssi kasvoi (Schouten ym. 2009). Otoskoko vaikutti merkittävästi varianssin suuruuteen: mitä pienempi otoskoko oli, sitä leveämmät olivat luottamusvälit ja sitä vaikeampi oli tehdä johtopäätöksiä edustavuudesta.