197 resultados para cash forestry
Resumo:
The primary aim of the present study was to find an efficient and simple method of vegetative propagation for producing large numbers of hybrid aspen (Populus tremuloides L. x P. tremula Michx.) plants for forest plantations. The key objectives were to investigate the main physiological factors that affect the ability of cuttings to regenerate and to determine whether these factors could be manipulated by different growth conditions. In addition, clonal variation in traits related to propagation success was examined. According to our results, with the stem cutting method, depending on the clone, it is possible to obtain only 1−8 plants from one stock plant per year. With the root cutting method the corresponding values for two-year-old stock plants are 81−207 plants. The difference in number of cuttings between one- and two-year-old stock plants is so pronounced that it is economically feasible to grow stock plants for two years. There is no reason to use much older stock plants as a source of cuttings, as it has been observed that rooting ability diminishes as root diameter increases. Clonal variation is the most important individual factor in propagation of hybrid aspen. The fact that the efficiently sprouted clones also rooted best facilitates the selection of clones for large-scale propagation. In practice, root cuttings taken from all parts of the root system of hybrid aspen were capable of producing new shoots and roots. However, for efficient rooting it is important to use roots smaller than one centimeter in diameter. Both rooting and sprouting, as well as sprouting rate, were increased by high soil temperature; in our studies the highest temperature tested (30ºC) was the best. Light accelerated the sprouting of root cuttings, but they rooted best in dark conditions. Rooting is essential because without roots the sprouted cutting cannot survive long. For aspen the criteria for clone selection are primarily fiber qualities and growth rate, but ability to regenerate efficiently is also essential. For large-scale propagation it is very important to find clones from which many cuttings per stock plant can be obtained. In light of production costs, however, it is even more important that the regeneration ability of the produced cuttings be high.
Resumo:
With respect to resource management and environmental impact, organic farming offers rationales for agricultural sustainability. However, agronomic productivity is usually higher with conventional farming. This work aimed at investigating two factors of major importance for the agronomic productivity of organic crop husbandry, nitrogen (N) supply through symbiotic N fixation (SNF) and weed occurrence. Perennial red clover-grass leys and spring cereal crops subjected to regular agricultural practices were studied on 34 organic farms located in the southern and the north-western coastal regions of Finland. Herbage growth, clover content as a proportion of the ley and extent of SNF in perennial leys, and the occurrence of weed species and weed-crop competition in spring cereal stands were related to climate conditions, soil properties, and management measures. The herbage accumulated from the first and the second cut of one- and two-year-old leys averaged 7.5 t DM ha-1 (SD ± 1.7 t DM ha-1); the clover content averaged 43.9% (SD ± 18.8%). Along with the clover content, herbage production decreased with ley age. Radiation use efficiency (RUE) correlated positively with clover proportion but despite low clover contents, three-year-old leys were still productive with regard to RUE. SNF in the accumulated annual growth of one- and two-year-old leys averaged 247.5 kg N ha-1 yr-1 (SD ± 114.4 kg N ha-1 yr-1). It was supposed that if red clover-grass leys constituted 40% of the rotation, then the mean N supply by SNF would be able to sustain two or three succeeding cereal crops (green manure and forage ley, respectively), yielding 3.0 to 4.0 t grain ha-1. Being a function of clover biomass, the SNF increased from the first to the second cut and thereafter declined with ley age. Coefficients of variation of clover contents (and SNF) between and within fields were around 50%, which was about twice as high as those of herbage production. The lower were the clover contents, the higher were the within-field variations of clover as a proportion of the ley. Low clover contents in one-year-old leys and increasing variability with ley age suggested that red clover growth was limited by poor establishment and poor overwintering. The proportions of clover in leys were lower and their variability was higher in the northwest than in the south. Soil properties, primarily texture and structure, had a major impact on clover proportion and herbage production, which largely explained regional differences in ley growth. Within-field variability of soil properties can be amended through site-specific measures, including drainage, liming, and applications of organic manures and mineral fertilizers. Overwintering and the persistence of leys can be improved by the choice of winter-hardy varieties, careful establishment and the appropriate harvest regime. Mean grain yields of spring cereal crops amounted to 3.2 t ha-1 in the south and 3.6 t ha-1 in the northwest. At 570 and 565 m-2 for the south and northwest respectively, mean weed densities did not differ between the regions, whereas the respective mean weed biomass of 697 and 1594 kg dry weight ha-1, respectively did differ. Weed abundance varied remarkably between single fields. The number of weed species was higher in the south than in the northwest. For example, Fumaria officinalis and Lamium spp. were found only in the south. Frequencies and abundances of Lapsana communis, Myosotis arvensis, Polygonum aviculare, Tripleurospermum inodorum, and Vicia spp. were higher in the south, whereas those of Elymus repens, Persicaria spp. and Spergula arvensis were higher in the northwest. The number of years since conversion to organic farming, i.e. long-term management, was one of the variables that explained the abundance of single weed species. E. repens was the weed species whose biomass increased most with the duration of organic farming. Another significant variable was crop biomass, which was affected by short-term management. The presence of different weed species was related to the duration of organic farming and to low crop yield. This finding demonstrated that it was not the organic farming regime per se, which resulted in high weed infestation and low yielding crops, but failures in the understanding and the management of organic farming systems. Successful weed control relies on farm- and field-specific long- and short-term management approaches. The agronomic productivity of ley and spring cereal crops managed by full-time farmers with an interest in organic farming was on the same level as of the mean for conventional farming. Given the many options for further improvements of the agronomic performance of organic arable systems, organic farming offers foundations for the development of sustainable agriculture. The main threat to the sustainability of farming in Finland, both conventional and organic, is the spatial separation of crop production and animal husbandry by region, along with the simplification of associated crop rotations.
Resumo:
Naked oat (Avena sativa f.sp. nuda L.) is the highest quality cereal in northern growing conditions. However the cultivation area of naked oat is remarkably small. Major challenges for naked oat production are to observe its nakedness. The caryopsis of naked oat is sensitive to mechanical damage at harvest, especially at high grain moisture content. The greater the grain moisture content of naked oat at harvest, the more loses of germination capacity was caused by threshing. For producing high quality naked oat seed, it is recommended that harvesting be done at as low grain moisture content as possible. However, if this is not possible, better germination can be ensure with gentle harvest by reducing the cylinder speed. In spite of conventional oat s excellent fat and amino acid composition in animal feed use, as far as nutritional value is concerned, the total energy yield of oat is weaker than other cereals because of the hulls. Also with naked oat the dehulling is not complete, while hull content on different cultivars mostly varied between one to six percent. In addition to genotype, environmental conditions markedly control the expression of nakedness. Thresher settings had only limited effects on hull content. The function of hulls is to protect the groat, but this was confirmed only for Finnish, small grain, cultivar Lisbeth. The oat kernel is generally covered with fine silky hairs termed trichomes. The trichomes of naked oat are partly lost during threshing and handling of grains. Trichomes can cause itchiness in those handling the grains and also accumulate and form fine dust and can block-up machinery. The cultivars differed considerably in pubescence. Some thresher settings, including increased cylinder speed, slightly increased grain polishing such that grains had some areas completely free of trichomes. Adjusting thresher settings was generally not an efficient means of solving the problems associated with naked oat trichomes. The main differences in cultivation costs between naked and conventional oat lie in the amount of seeds required and the drying costs. The main differences affecting the economic result lie in market prices, yield level and feed value. The results indicate that naked oat is financially more profitable than conventional oat, when the crop is sold at a specific price at all yield levels and when the crop is used as feed at highest yield level. At lower yield levels, conventional oat is, in spite of its lower feed value, the more profitable option for feed use. Dehulled oat did not achieve the same economic result as naked oat, as the cost of dehulling, including the hull waste, was considerable. According to this study naked oat can be cultivated successfully under northern conditions, when taking into consideration the soft, naked grain through cultivation chain.