51 resultados para soil testing


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The quantification and characterisation of soil phosphorus (P) is of agricultural and environmental importance and different extraction methods are widely used to asses the bioavailability of P and to characterize soil P reserves. However, the large variety of extractants, pre-treatments and sample preparation procedures complicate the comparison of published results. In order to improve our understanding of the behaviour and cycling of P in soil, it is crucial to know the scientific relevance of the methods used for various purposes. The knowledge of the factors affecting the analytical outcome is a prerequisite for justified interpretation of the results. The aim of this thesis was to study the effects of sample preparation procedures on soil P and to determine the dependence of the recovered P pool on the chemical nature of extractants. Sampling is a critical step in soil testing and sampling strategy is dependent on the land-use history and the purpose of sampling. This study revealed that pre-treatments changed soil properties and air-drying was found to affect soil P, particularly extractable organic P, by disrupting organic matter. This was evidenced by an increase in the water-extractable small-sized (<0.2 µm) P that, at least partly, took place at the expense of the large-sized (>0.2 µm) P. However, freezing induced only insignificant changes and thus, freezing can be taken to be a suitable method for storing soils from the boreal zone that naturally undergo periodic freezing. The results demonstrated that chemical nature of the extractant affects its sensitivity to detect changes in soil P solubility. Buffered extractants obscured the alterations in P solubility induced by pH changes; however, water extraction, though sensitive to physicochemical changes, can be used to reveal short term changes in soil P solubility. As for the organic P, the analysis was found to be sensitive to the sample preparation procedures: filtering may leave a large proportion of extractable organic P undetected, whereas the outcome of centrifugation was found to be affected by the ionic strength of the extractant. Widely used sequential fractionation procedures proved to be able to detect land-use -derived differences in the distribution of P among fractions of different solubilities. However, interpretation of the results from extraction experiments requires better understanding of the biogeochemical function of the recovered P fraction in the P cycle in differently managed soils under dissimilar climatic conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract. Methane emissions from natural wetlands and rice paddies constitute a large proportion of atmospheric methane, but the magnitude and year-to-year variation of these methane sources is still unpredictable. Here we describe and evaluate the integration of a methane biogeochemical model (CLM4Me; Riley et al., 2011) into the Community Land Model 4.0 (CLM4CN) in order to better explain spatial and temporal variations in methane emissions. We test new functions for soil pH and redox potential that impact microbial methane production in soils. We also constrain aerenchyma in plants in always-inundated areas in order to better represent wetland vegetation. Satellite inundated fraction is explicitly prescribed in the model because there are large differences between simulated fractional inundation and satellite observations. A rice paddy module is also incorporated into the model, where the fraction of land used for rice production is explicitly prescribed. The model is evaluated at the site level with vegetation cover and water table prescribed from measurements. Explicit site level evaluations of simulated methane emissions are quite different than evaluating the grid cell averaged emissions against available measurements. Using a baseline set of parameter values, our model-estimated average global wetland emissions for the period 1993–2004 were 256 Tg CH4 yr−1, and rice paddy emissions in the year 2000 were 42 Tg CH4 yr−1. Tropical wetlands contributed 201 Tg CH4 yr−1, or 78 % of the global wetland flux. Northern latitude (>50 N) systems contributed 12 Tg CH4 yr−1. We expect this latter number may be an underestimate due to the low high-latitude inundated area captured by satellites and unrealistically low high-latitude productivity and soil carbon predicted by CLM4. Sensitivity analysis showed a large range (150–346 Tg CH4 yr−1) in predicted global methane emissions. The large range was sensitive to: (1) the amount of methane transported through aerenchyma, (2) soil pH (± 100 Tg CH4 yr−1), and (3) redox inhibition (± 45 Tg CH4 yr−1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The feasibility of different modern analytical techniques for the mass spectrometric detection of anabolic androgenic steroids (AAS) in human urine was examined in order to enhance the prevalent analytics and to find reasonable strategies for effective sports drug testing. A comparative study of the sensitivity and specificity between gas chromatography (GC) combined with low (LRMS) and high resolution mass spectrometry (HRMS) in screening of AAS was carried out with four metabolites of methandienone. Measurements were done in selected ion monitoring mode with HRMS using a mass resolution of 5000. With HRMS the detection limits were considerably lower than with LRMS, enabling detection of steroids at low 0.2-0.5 ng/ml levels. However, also with HRMS, the biological background hampered the detection of some steroids. The applicability of liquid-phase microextraction (LPME) was studied with metabolites of fluoxymesterone, 4-chlorodehydromethyltestosterone, stanozolol and danazol. Factors affecting the extraction process were studied and a novel LPME method with in-fiber silylation was developed and validated for GC/MS analysis of the danazol metabolite. The method allowed precise, selective and sensitive analysis of the metabolite and enabled simultaneous filtration, extraction, enrichment and derivatization of the analyte from urine without any other steps in sample preparation. Liquid chromatographic/tandem mass spectrometric (LC/MS/MS) methods utilizing electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) were developed and applied for detection of oxandrolone and metabolites of stanozolol and 4-chlorodehydromethyltestosterone in urine. All methods exhibited high sensitivity and specificity. ESI showed, however, the best applicability, and a LC/ESI-MS/MS method for routine screening of nine 17-alkyl-substituted AAS was thus developed enabling fast and precise measurement of all analytes with detection limits below 2 ng/ml. The potential of chemometrics to resolve complex GC/MS data was demonstrated with samples prepared for AAS screening. Acquired full scan spectral data (m/z 40-700) were processed by the OSCAR algorithm (Optimization by Stepwise Constraints of Alternating Regression). The deconvolution process was able to dig out from a GC/MS run more than the double number of components as compared with the number of visible chromatographic peaks. Severely overlapping components, as well as components hidden in the chromatographic background could be isolated successfully. All studied techniques proved to be useful analytical tools to improve detection of AAS in urine. Superiority of different procedures is, however, compound-dependent and different techniques complement each other.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solid materials can exist in different physical structures without a change in chemical composition. This phenomenon, known as polymorphism, has several implications on pharmaceutical development and manufacturing. Various solid forms of a drug can possess different physical and chemical properties, which may affect processing characteristics and stability, as well as the performance of a drug in the human body. Therefore, knowledge and control of the solid forms is fundamental to maintain safety and high quality of pharmaceuticals. During manufacture, harsh conditions can give rise to unexpected solid phase transformations and therefore change the behavior of the drug. Traditionally, pharmaceutical production has relied on time-consuming off-line analysis of production batches and finished products. This has led to poor understanding of processes and drug products. Therefore, new powerful methods that enable real time monitoring of pharmaceuticals during manufacturing processes are greatly needed. The aim of this thesis was to apply spectroscopic techniques to solid phase analysis within different stages of drug development and manufacturing, and thus, provide a molecular level insight into the behavior of active pharmaceutical ingredients (APIs) during processing. Applications to polymorph screening and different unit operations were developed and studied. A new approach to dissolution testing, which involves simultaneous measurement of drug concentration in the dissolution medium and in-situ solid phase analysis of the dissolving sample, was introduced and studied. Solid phase analysis was successfully performed during different stages, enabling a molecular level insight into the occurring phenomena. Near-infrared (NIR) spectroscopy was utilized in screening of polymorphs and processing-induced transformations (PITs). Polymorph screening was also studied with NIR and Raman spectroscopy in tandem. Quantitative solid phase analysis during fluidized bed drying was performed with in-line NIR and Raman spectroscopy and partial least squares (PLS) regression, and different dehydration mechanisms were studied using in-situ spectroscopy and partial least squares discriminant analysis (PLS-DA). In-situ solid phase analysis with Raman spectroscopy during dissolution testing enabled analysis of dissolution as a whole, and provided a scientific explanation for changes in the dissolution rate. It was concluded that the methods applied and studied provide better process understanding and knowledge of the drug products, and therefore, a way to achieve better quality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sichuanissa Tiibetin ylängön metsäkato on pysähtynyt mutta eroosio-ongelmat jatkuvat Viikin tropiikki-instituutin tutkija Ping ZHOU kartoitti trooppisen metsänhoidon alaan kuuluvassa väitöskirjatyössään maaperän eroosioalttiutta ja sen riippuvuutta metsäkasvillisuudesta Jangtsen tärkeää sivuhaaraa Min-jokea ympäröivällä n. 7400 neliökilometrin suuruisella valuma-alueella Sichuanin Aba-piirikunnassa. Aineistonaan hän käytti muun muassa satelliittikartoitustietoja ja mittaustuloksia yli 600 maastokoealalta. Tutkimuksen nimi suomeksi on "Maaperän eroosion mallinnus ja vuoristoisen valuma-alueen ekologinen ennallistaminen Sichuanissa Kiinassa". Aikaisempien tutkimusten perusteella oli tiedossa että metsien häviäminen tällä alueella pysähtyi jo 1980-luvun alussa. Sen jälkeen on metsien pinta-ala hitaasti kasvanut etupäässä sen vuoksi, että teollinen puunhakkuu luonnonmetsissä kiellettiin kokonaan v. 1998 ja 25 astetta jyrkemmillä rinteillä myös maatalouden harjoittaminen on saatu lopetetuksi viljelijöille tarjottujen taloudellisten houkuttimien avulla. Täten myös pelto- ja laidunmaata on voitu ennallistaa metsäksi. Ping Zhou pystyi jakamaan 5700 metrin korkeuteen saakka kohoavan vuoristoalueen eroosioalttiudeltaan erilaisiin vyöhykkeisiin rinteen kaltevuuden, sademäärän, kasvipeitteen ja maalajin perusteella. Noin 15 prosentilla tutkitun valuma-alueen pinta-alasta, lähinnä Min-joen pääuomaa ympäröivillä jyrkillä rinteillä, eroosioriski oli suuri tai erittäin suuri. Eri tyyppisellä kasvillisuudella oli hyvin erilainen vaikutus eroosioalttiuteen, ja myös alueen sijainti vuoriston eri korkeuksilla vaikutti eroosioon. Säästyneet lähes luonnontilaiset havumetsät, joita on etupäässä vuoriston ylimmissä osissa 2600-4000 metrin korkeudella, edistävät tehokkaasti metsän luontaista uudistumista ja levittäytymistä vaurioituneille alueille. Säilyneiden metsien puulajikoostumus antoi tutkimuksessa mahdollisuuden ennustaa metsien tulevaa kehitystä koko tutkitulla valuma-alueella sen eri korkeusvyöhykkeissä ja eri maaperätyypeillä. Ennallistamisen kannalta ongelmallisimpia olivat alueet joilta metsäpeite oli lähinnä puiden teollisen hakkuun vuoksi kokonaan hävinnyt ja joilla maaperä yleisesti oli eroosion pahoin kuluttama. Näillä alueilla ei ole tehty juuri mitään uudistamis- tai ennallistamistoimenpiteitä. Niillä metsien ennallistaminen vaatii myös puiden tai pensaiden istuttamista. Tähän sopivia ovat erityisesti ilmakehän typpeä sitovat lajit, joista alueella kasvaa luontaisena mm. sama tyrnilaji joka esiintyy myös Suomessa. Työssä tutkittiin yli kahdeksankymmenen paikallisen luontaisen puulajin (joista peräti noin kolmannes on havupuulajeja) ekologisia ominaisuuksia ja soveltuvuutta metsien ennallistamiseen. Avainasemassa työn onnistumisen kannalta ovat nyt paikalliset asukkaat, joiden maankäytön muutokset ovat jo selvästi edistänet luonnonmetsän ennalleen palautumista. Suomen Akatemia rahoitti vuosina 2004-2006 VITRI:n tutkimushanketta, josta Ping Zhou'n väitöskirjatyö muodosti keskeisen osan. Kenttätyö Sichuanissa avasi mahdollisuuden hedelmälliseen monitieteiseen yhteistyöhön ja tutkijavaihtoon Kiinan tiedeakatemian alaisen Chengdun biologiainstituutin (CIB) kanssa; tämä tieteellinen kanssakäyminen jatkuu edelleen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soils represent a remarkable stock of carbon, and forest soils are estimated to hold half of the global stock of soil carbon. Topical concern about the effects of climate change and forest management on soil carbon as well as practical reporting requirements set by climate conventions have created a need to assess soil carbon stock changes reliably and transparently. The large spatial variability of soil carbon commensurate with relatively slow changes in stocks hinders the assessment of soil carbon stocks and their changes by direct measurements. Models therefore widely serve to estimate carbon stocks and stock changes in soils. This dissertation aimed to develop the soil carbon model YASSO for upland forest soils. The model was aimed to take into account the most important processes controlling the decomposition in soils, yet remain simple enough to ensure its practical applicability in different applications. The model structure and assumptions were presented and the model parameters were defined with empirical measurements. The model was evaluated by studying the sensitivities of the model results to parameter values, by estimating the precision of the results with an uncertainty analysis, and by assessing the accuracy of the model by comparing the predictions against measured data and to the results of an alternative model. The model was applied to study the effects of intensified biomass extraction on the forest carbon balance and to estimate the effects of soil carbon deficit on net greenhouse gas emissions of energy use of forest residues. The model was also applied in an inventory based method to assess the national scale forest carbon balance for Finland’s forests from 1922 to 2004. YASSO managed to describe sufficiently the effects of both the variable litter and climatic conditions on decomposition. When combined with the stand models or other systems providing litter information, the dynamic approach of the model proved to be powerful for estimating changes in soil carbon stocks on different scales. The climate dependency of the model, the effects of nitrogen on decomposition and forest growth as well as the effects of soil texture on soil carbon stock dynamics are areas for development when considering the applicability of the model to different research questions, different land use types and wider geographic regions. Intensified biomass extraction affects soil carbon stocks, and these changes in stocks should be taken into account when considering the net effects of forest residue utilisation as energy. On a national scale, soil carbon stocks play an important role in forest carbon balances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study addresses three important issues in tree bucking optimization in the context of cut-to-length harvesting. (1) Would the fit between the log demand and log output distributions be better if the price and/or demand matrices controlling the bucking decisions on modern cut-to-length harvesters were adjusted to the unique conditions of each individual stand? (2) In what ways can we generate stand and product specific price and demand matrices? (3) What alternatives do we have to measure the fit between the log demand and log output distributions, and what would be an ideal goodness-of-fit measure? Three iterative search systems were developed for seeking stand-specific price and demand matrix sets: (1) A fuzzy logic control system for calibrating the price matrix of one log product for one stand at a time (the stand-level one-product approach); (2) a genetic algorithm system for adjusting the price matrices of one log product in parallel for several stands (the forest-level one-product approach); and (3) a genetic algorithm system for dividing the overall demand matrix of each of the several log products into stand-specific sub-demands simultaneously for several stands and products (the forest-level multi-product approach). The stem material used for testing the performance of the stand-specific price and demand matrices against that of the reference matrices was comprised of 9 155 Norway spruce (Picea abies (L.) Karst.) sawlog stems gathered by harvesters from 15 mature spruce-dominated stands in southern Finland. The reference price and demand matrices were either direct copies or slightly modified versions of those used by two Finnish sawmilling companies. Two types of stand-specific bucking matrices were compiled for each log product. One was from the harvester-collected stem profiles and the other was from the pre-harvest inventory data. Four goodness-of-fit measures were analyzed for their appropriateness in determining the similarity between the log demand and log output distributions: (1) the apportionment degree (index), (2) the chi-square statistic, (3) Laspeyres quantity index, and (4) the price-weighted apportionment degree. The study confirmed that any improvement in the fit between the log demand and log output distributions can only be realized at the expense of log volumes produced. Stand-level pre-control of price matrices was found to be advantageous, provided the control is done with perfect stem data. Forest-level pre-control of price matrices resulted in no improvement in the cumulative apportionment degree. Cutting stands under the control of stand-specific demand matrices yielded a better total fit between the demand and output matrices at the forest level than was obtained by cutting each stand with non-stand-specific reference matrices. The theoretical and experimental analyses suggest that none of the three alternative goodness-of-fit measures clearly outperforms the traditional apportionment degree measure. Keywords: harvesting, tree bucking optimization, simulation, fuzzy control, genetic algorithms, goodness-of-fit

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The temperature sensitivity of decomposition of different soil organic matter (SOM) fractions was studied with laboratory incubations using 13C and 14C isotopes to differentiate between SOM of different age. The quality of SOM and the functionality and composition of microbial communities in soils formed under different climatic conditions were also studied. Transferring of organic layers from a colder to a warmer climate was used to assess how changing climate, litter input and soil biology will affect soil respiration and its temperature sensitivity. Together, these studies gave a consistent picture on how warming climate will affect the decomposition of different SOM fractions in Finnish forest soils: the most labile C was least temperature sensitive, indicating that it is utilized irrespective of temperature. The decomposition of intermediate C, with mean residence times from some years to decades, was found to be highly temperature sensitive. Even older, centennially cycling C was again less temperature sensitive, indicating that different stabilizing mechanisms were limiting its decomposition even at higher temperatures. Because the highly temperature sensitive, decadally cycling C, forms a major part of SOM stock in the organic layers of the studied forest soils, these results mean that these soils could lose more carbon during the coming years and decades than estimated earlier. SOM decomposition in boreal forest soils is likely to increase more in response to climate warming, compared to temperate or tropical soils, also because the Q10 is temperature dependent. In the northern soils the warming will occur at a lower temperature range, where Q10 is higher, and a similar increase in temperature causes a higher relative increase in respiration rates. The Q10 at low temperatures was found to be inversely related to SOM quality. At higher temperatures respiration was increasingly limited by low substrate availability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) forests dominate in Finnish Lapland. The need to study the effect of both soil factors and site preparation on the performance of planted Scots pine has increased due to the problems encountered in reforestation, especially on mesic and moist, formerly spruce-dominated sites. The present thesis examines soil hydrological properties and conditions, and effect of site preparation on them on 10 pine- and 10 spruce-dominated upland forest sites. Finally, the effects of both the site preparation and reforestation methods, and soil hydrology on the long-term performance of planted Scots pine are summarized. The results showed that pine and spruce sites differ significantly in their soil physical properties. Under field capacity or wetter soil moisture conditions, planted pines presumably suffer from excessive soil water and poor soil aeration on most of the originally spruce sites, but not on the pine sites. The results also suggested that site preparation affects the soil-water regime and thus prerequisites for forest growth over two decades after site preparation. High variation in the survival and mean height of planted pine was found. The study suggested that on spruce sites, pine survival is the lowest on sites that dry out slowly after rainfall events, and that height growth is the fastest on soils that reach favourable aeration conditions for root growth soon after saturation, and/or where the average air-filled porosity near field capacity is large enough for good root growth. Survival, but not mean height can be enhanced by employing intensive site preparation methods on spruce sites. On coarser-textured pine sites, site preparation methods don t affect survival, but methods affecting soil fertility, such as prescribed burning and ploughing, seem to enhance the height growth of planted Scots pines over several decades. The use of soil water content in situ as the sole criterion for sites suitable for pine reforestation was tested and found to be a relatively uncertain parameter. The thesis identified new potential soil variables, which should be tested using other data in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modifications of surface materials and their effects on cleanability have important impacts in many fields of activity. In this study the primary aim was to develop radiochemical methods suitable for evaluating cleanability in material research for different environments. Another aim was to investigate the effects of surface modifications on cleanabilitity and surface properties of plastics, ceramics, concrete materials and also their coatings in conditions simulating their typical environments. Several new 51Cr and 14C labelled soils were developed for testing situations. The new radiochemical methods developed were suitable for examining different surface materials and different soil types, providing quantitative information about the amount of soil on surfaces. They also take into account soil soaked into surfaces. The supporting methods colorimetric determination and ATP bioluminescence provided semi-quantitative results. The results from the radiochemical and supporting methods partly correlated with each other. From a material research point of view numerous new materials were evaluated. These included both laboratory-made model materials and commercial products. Increasing the amount of plasticizer decreased the cleanability of poly(vinyl chloride) (PVC) materials. Microstructured surfaces of plastics improved the cleanability of PVC from particle soils, whereas for oil soil microstructuring reduced the cleanability. In the case of glazed ceramic materials, coatings affected the cleanability. The roughness of surfaces correlated with cleanability from particle soils and the cleanability from oil soil correlated with the contact angles. Organic particle soil was removed more efficiently from TiO2-coated ceramic surfaces after UV-radiation than without UV treatment, whereas no effect was observed on the cleanability of oil soil. Coatings improved the cleanability of concrete flooring materials intended for use in animal houses.