58 resultados para plant density


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Buffer zones are vegetated strip-edges of agricultural fields along watercourses. As linear habitats in agricultural ecosystems, buffer strips dominate and play a leading ecological role in many areas. This thesis focuses on the plant species diversity of the buffer zones in a Finnish agricultural landscape. The main objective of the present study is to identify the determinants of floral species diversity in arable buffer zones from local to regional levels. This study was conducted in a watershed area of a farmland landscape of southern Finland. The study area, Lepsämänjoki, is situated in the Nurmijärvi commune 30 km to the north of Helsinki, Finland. The biotope mosaics were mapped in GIS. A total of 59 buffer zones were surveyed, of which 29 buffer strips surveyed were also sampled by plot. Firstly, two diversity components (species richness and evenness) were investigated to determine whether the relationship between the two is equal and predictable. I found no correlation between species richness and evenness. The relationship between richness and evenness is unpredictable in a small-scale human-shaped ecosystem. Ordination and correlation analyses show that richness and evenness may result from different ecological processes, and thus should be considered separately. Species richness correlated negatively with phosphorus content, and species evenness correlated negatively with the ratio of organic carbon to total nitrogen in soil. The lack of a consistent pattern in the relationship between these two components may be due to site-specific variation in resource utilization by plant species. Within-habitat configuration (width, length, and area) were investigated to determine which is more effective for predicting species richness. More species per unit area increment could be obtained from widening the buffer strip than from lengthening it. The width of the strips is an effective determinant of plant species richness. The increase in species diversity with an increase in the width of buffer strips may be due to cross-sectional habitat gradients within the linear patches. This result can serve as a reference for policy makers, and has application value in agricultural management. In the framework of metacommunity theory, I found that both mass effect(connectivity) and species sorting (resource heterogeneity) were likely to explain species composition and diversity on a local and regional scale. The local and regional processes were interactively dominated by the degree to which dispersal perturbs local communities. In the lowly and intermediately connected regions, species sorting was of primary importance to explain species diversity, while the mass effect surpassed species sorting in the highly connected region. Increasing connectivity in communities containing high habitat heterogeneity can lead to the homogenization of local communities, and consequently, to lower regional diversity, while local species richness was unrelated to the habitat connectivity. Of all species found, Anthriscus sylvestris, Phalaris arundinacea, and Phleum pretense significantly responded to connectivity, and showed high abundance in the highly connected region. We suggest that these species may play a role in switching the force from local resources to regional connectivity shaping the community structure. On the landscape context level, the different responses of local species richness and evenness to landscape context were investigated. Seven landscape structural parameters served to indicate landscape context on five scales. On all scales but the smallest scales, the Shannon-Wiener diversity of land covers (H') correlated positively with the local richness. The factor (H') showed the highest correlation coefficients in species richness on the second largest scale. The edge density of arable field was the only predictor that correlated with species evenness on all scales, which showed the highest predictive power on the second smallest scale. The different predictive power of the factors on different scales showed a scaledependent relationship between the landscape context and local plant species diversity, and indicated that different ecological processes determine species richness and evenness. The local richness of species depends on a regional process on large scales, which may relate to the regional species pool, while species evenness depends on a fine- or coarse-grained farming system, which may relate to the patch quality of the habitats of field edges near the buffer strips. My results suggested some guidelines of species diversity conservation in the agricultural ecosystem. To maintain a high level of species diversity in the strips, a high level of phosphorus in strip soil should be avoided. Widening the strips is the most effective mean to improve species richness. Habitat connectivity is not always favorable to species diversity because increasing connectivity in communities containing high habitat heterogeneity can lead to the homogenization of local communities (beta diversity) and, consequently, to lower regional diversity. Overall, a synthesis of local and regional factors emerged as the model that best explain variations in plant species diversity. The studies also suggest that the effects of determinants on species diversity have a complex relationship with scale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Erwinia carotovora subsp. carotovora (Ecc) is a Gram-negative enterobacterium that causes soft-rot in potato and other crops. The main virulence determinants, the extracellular plant cell wall -degrading enzymes (PCWDEs), lead to plant tissue maceration. In order to establish a successful infection the production of PCWDEs are controlled by a complex regulatory network, including both specific and global activators and repressors. One of the most important virulence regulation systems in Ecc is mediated by quorum sensing (QS), which is a population density -dependent cell-to-cell communication mechanism used by many Gram-negative bacteria. In these bacteria N-acylhomoserine lactones (AHSL), act as diffusible signaling molecules enabling communication between bacterial cells. The AHSLs are structurally diverse and differ in their acyl chain length. This gives the bacteria signaling specificity and enables the recognition and communication within its own species. In order to detect and respond to the AHSLs the bacteria use QS regulators, LuxR-type proteins. The aim of this study was to get a deeper understanding of the Ecc QS system. In the first part of the study we showed that even different strains of Ecc use different dialects and of physiological concentrations, only the cognate AHSL with the correct acyl chain is recognized as a signal that can switch on virulence genes. The molecular basis of the substrate specificity of the AHSL synthase ExpI was investigated in order to recognize the acyl chain length specificity determinants of distinct AHSL synthases. Several critical residues that define the size of the substrate-binding pocket were identified. We demonstrated that in the ExpISCC1 mutations M127T and F69L are sufficient to change the N-3-oxohexanoyl-L-homoserine lactone producing ExpISCC1 to an N-3-oxooctanoyl-L-homoserine lactone (3-oxo-C8-HSL) producing enzyme. In the second study the means of sensing specificity and response to the AHSL signaling molecule were investigated. We demonstrated that the AHSL receptor ExpR1 of Ecc strain SCC3193 has strict specificity for the cognate AHSL 3-oxo-C8-HSL. In addition we identified a second AHSL receptor ExpR2 with a novel property to sense AHSLs with different acyl chain lengths. In the absence of AHSLs ExpR1 and ExpR2 were found to act synergistically to repress the virulence gene expression. This repression was shown to be released by addition of AHSLs and appears to be largely mediated by the global negative regulator RsmA. In the third study random transposon mutagenesis was used to widen the knowledge of the Ecc QS regulon. Two new QS-controlled target genes, encoding a DNA-binding regulator Hor and a plant ferredoxin-like protein FerE, were identified. The QS control of the identified genes was executed by the QS regulators ExpR1 and ExpR2 and as expression of PCWDE genes mediated by the RsmA repressor. Hor was shown to contribute to bacterial virulence at least partly through its control of PCWDE production, while FerE was shown to contribute to oxidative stress tolerance and in planta fitness of the bacteria. In addition our results suggest that QS is central to the control of oxidative stress tolerance in Ecc. In conclusion, these results indicate that Ecc strain SCC3193 is able to react and respond both to the cognate AHSL signal and the signals produced by other bacterial species, in order to control a wide variety of functions in the plant pathogen Ecc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Large herbivores can influence plant and soil properties in grassland ecosystems, but especially for belowground biota and processes, the mechanisms that explain these effects are not fully understood. Here, we examine the capability of three grazing mechanisms-plant defoliation, dung and urine return, and physical presence of animals (causing trampling and excreta return in patches)-to explain grazing effects in Phleum pratense-Festuca pratensis dairy cow pasture in Finland. Comparison of control plots and plots grazed by cows showed that grazing maintained original plant-community structure, decreased shoot mass and root N and P concentrations, increased shoot N and P concentrations, and had an inconsistent effect on root mass. Among soil fauna, grazing increased the abundance of fungivorous nematodes and Aporrectodea earthworms and decreased the abundance of detritivorous enchytraeids and Lumbricus earthworms. Grazing also increased soil density and pH but did not affect average soil inorganic-N concentration. To reveal the mechanisms behind these effects, we analyzed results from mowed plots and plots that were both mowed and treated with a dung and urine mixture. This comparison revealed that grazing effects on plant attributes were almost entirely explained by defoliation, with only one partly explained by excreta return. Among belowground attributes, however, the mechanisms were more mixed, with effects explained by defoliation, patchy excreta return, and cow trampling. Average soil inorganic-N concentration was not affected by grazing because it was simultaneously decreased by defoliation and increased by cow presence. Presence of cows created great spatial heterogeneity in soil N availability and abundance of fungivorous nematodes. A greenhouse trial revealed a grazing-induced soil feedback on plant growth, which was explained by patchiness in N availability rather than changes in soil biota. Our results show that grazing effects on plant attributes can be satisfactorily predicted using the effects of defoliation, whereas those on soil fauna and soil N availability need understanding of other mechanisms as well. The results indicate that defoliation-induced changes in plant ecophysiology and the great spatial variation in N availability created by grazers are the two key mechanisms through which large herbivores can control grassland ecosystems.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Colorectal cancer (CRC) is a major health concern and demands long-term efforts in developing strategies for screening and prevention. CRC has become a preventable disease as a consequence of a better understanding of colorectal carcinogenesis. However, current therapy is unsatisfactory and necessitates the exploration of other approaches for the prevention and treatment of cancer. Plant based products have been recognized as preventive with regard to the development of colon cancer. Therefore, the potential chemopreventive use and mechanism of action of Lebanese natural product were evaluated. Towards this aim the antitumor activity of Onopordum cynarocephalum and Centaurea ainetensis has been studied using in vitro and in vivo models. In vitro, both crude extracts were non cytotoxic to normal intestinal cells and inhibited the proliferation of colon cancer cells in a dose-dependent manner. In vivo, both crude extracts reduced the number of tumors by an average of 65% at weeks 20 (adenomas stage) and 30 (adenocarcinomas stage). The activity of the C. ainetensis extract was attributed to Salograviolide A, a guaianolide-type sesquiterpene lactone, which was isolated and identified through bio-guided fractionation. The mechanism of action of thymoquinone (TQ), the active component of Nigella sativa, was established in colon cancer cells using in vitro models. By the use of N-acetyl cysteine, a radical scavenger, the direct involvement of reactive oxygen species in TQ-induced apoptotic cells was established. The analytical detection of TQ from spiked serum and its protein binding were evaluated. The average recovery of TQ from spiked serum subjected to several extraction procedures was 2.5% proving the inability of conventional methods to analyze TQ from serum. This has been explained by the extensive binding (>98%) of TQ to serum and major serum components such as bovine serum albumin (BSA) and alpha-1-acid glycoprotein (AGP). Using mass spectrometry analysis, TQ was confirmed to bind covalently to the free cysteine in position 34 and 147 of the amino acid sequence of BSA and AGP, respectively. The results of this work put at the disposal for future development new plants with anti-cancer activities and enhance the understanding of the pharmaceutical properties of TQ, a prerequisite for its future clinical development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Failures in industrial organizations dealing with hazardous technologies can have widespread consequences for the safety of the workers and the general population. Psychology can have a major role in contributing to the safe and reliable operation of these technologies. Most current models of safety management in complex sociotechnical systems such as nuclear power plant maintenance are either non-contextual or based on an overly-rational image of an organization. Thus, they fail to grasp either the actual requirements of the work or the socially-constructed nature of the work in question. The general aim of the present study is to develop and test a methodology for contextual assessment of organizational culture in complex sociotechnical systems. This is done by demonstrating the findings that the application of the emerging methodology produces in the domain of maintenance of a nuclear power plant (NPP). The concepts of organizational culture and organizational core task (OCT) are operationalized and tested in the case studies. We argue that when the complexity of the work, technology and social environment is increased, the significance of the most implicit features of organizational culture as a means of coordinating the work and achieving safety and effectiveness of the activities also increases. For this reason a cultural perspective could provide additional insight into the problem of safety management. The present study aims to determine; (1) the elements of the organizational culture in complex sociotechnical systems; (2) the demands the maintenance task sets for the organizational culture; (3) how the current organizational culture at the case organizations supports the perception and fulfilment of the demands of the maintenance work; (4) the similarities and differences between the maintenance cultures at the case organizations, and (5) the necessary assessment of the organizational culture in complex sociotechnical systems. Three in-depth case studies were carried out at the maintenance units of three Nordic NPPs. The case studies employed an iterative and multimethod research strategy. The following methods were used: interviews, CULTURE-survey, seminars, document analysis and group work. Both cultural analysis and task modelling were carried out. The results indicate that organizational culture in complex sociotechnical systems can be characterised according to three qualitatively different elements: structure, internal integration and conceptions. All three of these elements of culture as well as their interrelations have to be considered in organizational assessments or important aspects of the organizational dynamics will be overlooked. On the basis of OCT modelling, the maintenance core task was defined as balancing between three critical demands: anticipating the condition of the plant and conducting preventive maintenance accordingly, reacting to unexpected technical faults and monitoring and reflecting on the effects of maintenance actions and the condition of the plant. The results indicate that safety was highly valued at all three plants, and in that sense they all had strong safety cultures. In other respects the cultural features were quite different, and thus the culturally-accepted means of maintaining high safety also differed. The handicraft nature of maintenance work was emphasised as a source of identity at the NPPs. Overall, the importance of safety was taken for granted, but the cultural norms concerning the appropriate means to guarantee it were little reflected. A sense of control, personal responsibility and organizational changes emerged as challenging issues at all the plants. The study shows that in complex sociotechnical systems it is both necessary and possible to analyse the safety and effectiveness of the organizational culture. Safety in complex sociotechnical systems cannot be understood or managed without understanding the demands of the organizational core task and managing the dynamics between the three elements of the organizational culture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reverse cholesterol transport (RCT) is an important function of high-density lipoproteins (HDL) in the protection of atherosclerosis. RCT is the process by which HDL stimulates cholesterol removal from peripheral cells and transports it to the liver for excretion. Premenopausal women have a reduced risk for atherosclerosis compared to age-matched men and there exists a positive correlation for serum 17β-estradiol (E2) and HDL levels in premenopausal women supporting the role of E2 in atherosclerosis prevention. In premenopausal women, E2 associates with HDL as E2 fatty acyl esters. Discovery of the cellular targets, metabolism, and assessment of the macrophage cholesterol efflux potential of these HDL-associated E2 fatty acyl esters were the major objectives of this thesis (study I, III, and IV). Soy phytoestrogens, which are related to E2 in both structure and function, have been proposed to be protective against atherosclerosis but the evidence to support these claims is conflicting. Therefore, another objective of this thesis was to assess the ability of serum from postmenopausal women, treated with isoflavone supplements (compared to placebo), to promote macrophage cholesterol efflux (study II). The scope of this thesis was to cover the roles that HDL-associated E2 fatty acyl esters have in the cellular aspects of RCT and to determine if soy isoflavones can also influence RCT mechanisms. SR-BI was a pivotal cellular receptor, responsible for hepatic and macrophage uptake and macrophage cholesterol efflux potential of HDL-associated E2 fatty acyl esters. Functional SR-BI was also critical for proper LCAT esterification activity which could impact HDL-associated E2 fatty acyl ester assembly and its function. In hepatic cells, LDL receptors also contributed to HDL-associated E2 fatty acyl esters uptake and in macrophage cells, estrogen receptors (ERs) were necessary for both HDL-associated E2 ester-specific uptake and cholesterol efflux potential. HDL-containing E2 fatty acyl esters (E2-FAE) stimulated enhanced cholesterol efflux compared to male HDL (which are deficient in E2) demonstrating the importance of the E2 ester in this process. To support this, premenopausal female HDL, which naturally contains E2, showed greater macrophage cholesterol efflux compared to males. Additionally, hepatic and macrophage cells hydrolyzed the HDL-associated E2 fatty acyl ester into unesterified E2. This could have important biological ramifications because E2, not the esterified form, has potent cellular effects which may influence RCT mechanisms. Lastly, soy isoflavone supplementation in postmenopausal women did not modulate ABCA1-specific macrophage cholesterol efflux but did increase production of plasma pre-β HDL levels, a subclass of HDL. Therefore, the impact of isoflavones on RCT and cardiovascular health needs to be further investigated. Taken as a whole, HDL-associated E2 fatty acyl esters from premenopausal women and soy phytoestrogen treatment in postmenopausal women may be important factors that increase the efficiency of RCT through cellular lipoprotein-related processes and may have direct implications on the cardiovascular health of women.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The antioxidant activity of natural plant materials rich in phenolic compounds is being widely investigated for protection of food products sensitive to oxidative reactions. In this thesis plant materials rich in phenolic compounds were studied as possible antioxidants to prevent protein and lipid oxidation reactions in different food matrixes such as pork meat patties and corn oil-in water emulsions. Loss of anthocyanins was also measured during oxidation in corn oil-in-water emulsions. In addition, the impact of plant phenolics on amino acid level was studied using tryptophan as a model compound to elucidate their role in preventing the formation of tryptophan oxidation products. A high-performance liquid chromatography (HPLC) method with ultraviolet and fluorescence detection (UV-FL) was developed that enabled fast investigation of formation of tryptophan derived oxidation products. Byproducts of oilseed processes such as rapeseed (Brassica rapa L.), camelina (Camelina sativa) and soy meal (Glycine max L.) as well as Scots pine bark (Pinus sylvestris) and several reference compounds were shown to act as antioxidants toward both protein and lipid oxidation in cooked pork meat patties. In meat, the antioxidant activity of camelina, rapeseed and soy meal were more pronounced when used in combination with a commercial rosemary extract (Rosmarinus officinalis). Berry phenolics such as black currant (Ribes nigrum) anthocyanins and raspberry (Rubus idaeus) ellagitannins showed potent antioxidant activity in corn oil-in-water emulsions toward lipid oxidation with and without β-lactoglobulin. The antioxidant effect was more pronounced in the presence of β-lactoglobulin. The berry phenolics also inhibited the oxidation of tryptophan and cysteine side chains of β-lactoglobulin. The results show that the amino acid side chains were oxidized prior the propagation of lipid oxidation, thereby inhibiting fatty acid scission. In addition, the concentration and color of black currant anthocyanins decreased during the oxidation. Oxidation of tryptophan was investigated in two different oxidation models with hydrogen peroxide (H2O2) and hexanal/FeCl2. Oxidation of tryptophan in both models resulted in oxidation products such as 3a-hydroxypyrroloindole-2-carboxylic acid, dioxindolylalanine, 5-hydroxy-tryptophan, kynurenine, N-formylkynurenine and β-oxindolylalanine. However, formation of tryptamine was only observed in tryptophan oxidized in the presence of H2O2. Pine bark phenolics, black currant anthocyanins, camelina meal phenolics as well as cranberry proanthocyanidins (Vaccinium oxycoccus) provided the best antioxidant effect toward tryptophan and its oxidation products when oxidized with H2O2. The tryptophan modifications formed upon hexanal/FeCl2 treatment were efficiently inhibited by camelina meal followed by rapeseed and soy meal. In contrast, phenolics from raspberry, black currant, and rowanberry (Sorbus aucuparia) acted as weak prooxidants. This thesis contributes to elucidating the effects of natural phenolic compounds as potential antioxidants in order to control and prevent protein and lipid oxidation reactions. Understanding the relationship between phenolic compounds and proteins as well as lipids could lead to the development of new, effective, and multifunctional antioxidant strategies that could be used in food, cosmetic and pharmaceutical applications.