35 resultados para Tropical plants


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Colorectal cancer (CRC) is a major health concern and demands long-term efforts in developing strategies for screening and prevention. CRC has become a preventable disease as a consequence of a better understanding of colorectal carcinogenesis. However, current therapy is unsatisfactory and necessitates the exploration of other approaches for the prevention and treatment of cancer. Plant based products have been recognized as preventive with regard to the development of colon cancer. Therefore, the potential chemopreventive use and mechanism of action of Lebanese natural product were evaluated. Towards this aim the antitumor activity of Onopordum cynarocephalum and Centaurea ainetensis has been studied using in vitro and in vivo models. In vitro, both crude extracts were non cytotoxic to normal intestinal cells and inhibited the proliferation of colon cancer cells in a dose-dependent manner. In vivo, both crude extracts reduced the number of tumors by an average of 65% at weeks 20 (adenomas stage) and 30 (adenocarcinomas stage). The activity of the C. ainetensis extract was attributed to Salograviolide A, a guaianolide-type sesquiterpene lactone, which was isolated and identified through bio-guided fractionation. The mechanism of action of thymoquinone (TQ), the active component of Nigella sativa, was established in colon cancer cells using in vitro models. By the use of N-acetyl cysteine, a radical scavenger, the direct involvement of reactive oxygen species in TQ-induced apoptotic cells was established. The analytical detection of TQ from spiked serum and its protein binding were evaluated. The average recovery of TQ from spiked serum subjected to several extraction procedures was 2.5% proving the inability of conventional methods to analyze TQ from serum. This has been explained by the extensive binding (>98%) of TQ to serum and major serum components such as bovine serum albumin (BSA) and alpha-1-acid glycoprotein (AGP). Using mass spectrometry analysis, TQ was confirmed to bind covalently to the free cysteine in position 34 and 147 of the amino acid sequence of BSA and AGP, respectively. The results of this work put at the disposal for future development new plants with anti-cancer activities and enhance the understanding of the pharmaceutical properties of TQ, a prerequisite for its future clinical development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acacia senegal, the gum arabic producing tree, is the most important component in traditional dryland agroforestry systems in the Blue Nile region, Sudan. The aim of the present study was to provide new knowledge on the potential use of A. senegal in dryland agroforestry systems on clay soils, as well as information on tree/crop interaction, and on silvicultural and management tools, with consideration on system productivity, nutrient cycling and sustainability. Moreover, the aim was also to clarify the intra-specific variation in the performance of A. senegal and, specifically, the adaptation of trees of different origin to the clay soils of the Blue Nile region. In agroforestry systems established at the beginning of the study, tree and crop growth, water use, gum and crop yields, nutrient cycling and system performance were investigated for a period of four years (1999 to 2002). Trees were grown at 5 x 5 m and 10 x 10 m spacing alone or in mixture with sorghum or sesame; crops were also grown in sole culture. The symbiotic biological N2 fixation by A. senegal was estimated using the 15N natural abundance (δ15N) procedure in eight provenances collected from different environments and soil types of the gum arabic belt and grown in clay soil in the Blue Nile region. Balanites aegyptiaca (a non-legume) was used as a non-N-fixing reference tree species, so as to allow 15N-based estimates of the proportion of the nitrogen in trees derived from the atmosphere. In the planted acacia trees, measurements were made on shoot growth, water-use efficiency (as assessed by the δ13C method) and (starting from the third year) gum production. Carbon isotope ratios were obtained from the leaves and branch wood samples. The agroforestry system design caused no statistically significant variation in water use, but the variation was highly significant between years, and the highest water use occurred in the years with high rainfall. No statistically significant differences were found in sorghum or sesame yields when intercropping and sole crop systems were compared (yield averages were 1.54 and 1.54 ha-1 for sorghum and 0.36 and 0.42 t ha-1 for sesame in the intercropped and mono-crop plots, respectively). Thus, at an early stage of agroforestry system management, A. senegal had no detrimental effect on crop yield, but the pattern of resource capture by trees and crops may change as the system matures. Intercropping resulted in taller trees and larger basal and crown diameters as compared to the development of sole trees. It also resulted in a higher land equivalent ratio. When gum yields were analysed it was found that a significant positive relationship existed between the second gum picking and the total gum yield. The second gum picking seems to be a decisive factor in gum production and could be used as an indicator for the total gum yield in a particular year. In trees, the concentrations of N and P were higher in leaves and roots, whereas the levels of K were higher in stems, branches and roots. Soil organic matter, N, P and K contents were highest in the upper soil stratum. There was some indication that the P content slightly increased in the topsoil as the agroforestry plantations aged. At a stocking of 400 trees ha-1 (5 x 5 m spacing), A. senegal accumulated in the biomass a total of 18, 1.21, 7.8 and 972 kg ha-1of N, P, K and OC, respectively. Trees contributed ca. 217 and 1500 kg ha-1 of K and OC, respectively, to the top 25-cm of soil over the first four years of intercropping. Acacia provenances of clay plain origin showed considerable variation in seed weight. They also had the lowest average seed weight as compared to the sandy soil (western) provenances. At the experimental site in the clay soil region, the clay provenances were distinctly superior to the sand provenances in all traits studied but especially in basal diameter and crown width, thus reflecting their adaptation to the environment. Values of δ13C, indicating water use efficiency, were higher in the sand soil group as compared to the clay one, both in leaves and in branch wood. This suggests that the sand provenances (with an average value of -28.07 ) displayed conservative water use and high drought tolerance. Of the clay provenances, the local one (Bout) displayed a highly negative (-29.31 ) value, which indicates less conservative water use that resulted in high productivity at this particular clay-soil site. Water use thus appeared to correspond to the environmental conditions prevailing at the original locations for these provenances. Results suggest that A. senegal provenances from the clay part of the gum belt are adapted for a faster growth rate and higher biomass and gum productivity as compared to provenances from sand regions. A strong negative relationship was found between the per-tree gum yield and water use efficiency, as indicated by δ13C. The differences in water use and gum production were greater among provenance groups than within them, suggesting that selection among rather than within provenances would result in distinct genetic gain in gum yield. The relative δ15N values ( ) were higher in B. aegyptiaca than in the N2-fixing acacia provenances. The amount of Ndfa increased significantly with age in all provenances, indicating that A. senegal is a potentially efficient nitrogen fixer and has an important role in t agroforestry development. The total above-ground contribution of fixed N to foliage growth in 4-year-old A. senegal trees was highest in the Rahad sand-soil provenance (46.7 kg N ha-1) and lowest in the Mazmoom clay-soil provenance (28.7 kg N ha-1). This study represents the first use of the δ15N method for estimating the N input by A. senegal in the gum belt of Sudan. Key words: Acacia senegal, agroforestry, clay plain, δ13C, δ15N, gum arabic, nutrient cycling, Ndfa, Sorghum bicolor, Sesamum indicum

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Viruksien käyttö tuotekehityksen ja tutkimuksen vaatimien proteiinien tuottamiseen, syötävien rokotteiden kehittämiseen ja geeniterapiaan edustavat kasvavia biotekniikan sovellusalueita. Perunan A-virus (PVA) kuuluu potyviruksiin, joiden proteiinit tuotetaan aluksi yhtenä suurena molekyylinä, joka pilkotaan yksittäisiksi proteiineiksi viruksen itsensä tuottamilla entsyymeillä. Siten virusgenomiin lisätty vieras geeni käännetään proteiiniksi virusproteiinien mukana. Lopputuloksena kaikkia proteiineja tuotetaan kasvisoluissa samansuuruinen määrä. Lisäksi, viruksen proteiinikuoren koontimekanismi sallii perintöaineksen merkittävän lisäyksen ilman että viruksen tartutuskyky merkittävästi heikkenee. Koska virus monistuu ja leviää koko kasviin, jo melko pieni määrä kasveja riittää huomattavan proteiinimäärän tuottamiseen esimerkiksi säännösten mukaisessa kasvihuoneessa. Tämän työn tarkoituksena oli muuntaa PVA:n genomia siten, että virus soveltuisi yhden vieraan proteiinin tai useiden erilaisten proteiinien samanaikaiseen tuottamiseen kasveissa. Aluksi kokeiltiin viruksen replikaasia ja kuoriproteiinia koodaavien genomialueiden välistä kohtaa ja ihmisestä peräisi olevaa geeniä, joka tuotti S-COMT-entsyymiä (katekoli-O-metyylitransferaasi). Sen aktiivisuuden rajoittaminen auttaa Parkinsonintaudin hoidossa. Kasvissa tuotettua S-COMT:ia voitaisiin käyttää lääkekehityksessä estolääkkeiden testaukseen. Kahden viikon kuluttua tartutuksesta tupakan lehdissä oli entsymaattisesti aktiivista S-COMT:ia n. 1 % lehden liukoisista proteiineista. PVA:n P1-proteiinia koodaavalta alueelta oli paikannettu kohta, johon ehkä voitaisiin siirtää vieras geeni. Asia varmistettiin siirtämällä tähän kohtaan meduusan geeni, joka tuottaa UV-valossa vihreänä fluoresoivaa proteiinia (GFP). GFP-geeniä kantava PVA levisi kasvissa ja lisääntyi n. 30-50 %:iin viruksen normaalista pitoisuudesta. Koko kasvi fluoresoi vihreänä UV-valossa. Vieras geeni voidaan sijoittaa myös potyviruksen P1- ja HCpro-proteiineja koodaavien alueiden väliin. Samaan PVA-genomiin siirrettiin kolme geeniä, yksi kuhunkin kolmesta kloonauskohdasta: GFP-geeni P1:n sisälle, merivuokon lusiferaasigeeni P1/HCpro-kohtaan ja bakteerin beta-glukuronidaasigeeni (GUS) replikaasi/kuoriproteiini-kohtaan. Virusgenomin ja itse viruksen pituudet kasvoivat 38 %, mutta virus säilytti tartutuskykynsä. Se levisi kasveissa saavuttaen n. 15 % viruksen normaalista pitoisuudesta. Kaikki kolme vierasta proteiinia esiintyivät lehdissä aktiivisina.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flax and hemp have traditionally been used mainly for textiles, but recently interest has also been focused on non-textile applications. Microbial quality throughout the whole processing chain of bast fibres has not previously been studied. This study concentrates on the microbial quality and possible microbial risks in the production chain of hemp and flax fibres and fibrous thermal insulations. In order to be able to utilize hemp and flax fibres, the bast fibres must be separated from the rest of the plant. Non-cellulosic components can be removed with various pretreatment processes, which are associated with a certain risk of microbial contamination. In this study enzymatic retting and steam explosion (STEX) were examined as pretreatment processes. On the basis of the results obtained in this study, the microbial contents on stalks of both plants studied increased at the end of the growing season and during the winter. However, by processing and mechanical separation it is possible to produce fibres containing less moulds and bacteria than the whole stem. Enzymatic treatment encouraged the growth of moulds in fibres. Steam explosion reduced the amount of moulds in fibres. Dry thermal treatment used in this study did not markedly reduce the amount of microbes. In this project an emission measurement chamber was developed which was suitable for measurements of emissions from both mat type and loose fill type insulations, and capable of interdisciplinary sampling. In this study, the highest amounts of fungal emissions were in the range of 10^3 10^5 cfu/m^3 from the flax and hemp insulations at 90% RH of air. The fungal emissions from stone wool, glass wool and recycled paper insulations were below 10^2 cfu/m^3 even at 90% RH. Equally low values were obtained from bast fibrous materials in lower humidities (at 30% and 80% RH of air). After drying of moulded insulations at 30% RH, the amounts of emitted moulds were in all cases higher compared to the emissions at 90% RH before drying. The most common fungi in bast fibres were Penicillium and Rhizopus. The widest variety of different fungi was in the untreated hemp and linseed fibres and in the commercial loose-fill flax insulation. Penicillium, Rhizopus and Paecilomyces were the most tolerant to steam explosion. According to the literature, the most common fungi in building materials and indoor air are Penicillium, Aspergillus and Cladosporium, which were all found in some of the bast fibre materials in this study. As organic materials, hemp and flax fibres contain high levels of nutrients for microbial growth. The amount of microbes can be controlled and somewhat decreased by the processing methods presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The studies presented in this thesis contribute to the understanding of evolutionary ecology of three major viruses threatening cultivated sweetpotato (Ipomoea batatas Lam) in East Africa: Sweet potato feathery mottle virus (SPFMV; genus Potyvirus; Potyviridae), Sweet potato chlorotic stunt virus (SPCSV; genus Crinivirus; Closteroviridae) and Sweet potato mild mottle virus (SPMMV; genus Ipomovirus; Potyviridae). The viruses were serologically detected and the positive results confirmed by RT-PCR and sequencing. SPFMV was detected in 24 wild plant species of family Convolvulacea (genera Ipomoea, Lepistemon and Hewittia), of which 19 species were new natural hosts for SPFMV. SPMMV and SPCSV were detected in wild plants belonging to 21 and 12 species (genera Ipomoea, Lepistemon and Hewittia), respectively, all of which were previously unknown to be natural hosts of these viruses. SPFMV was the most abundant virus being detected in 17% of the plants, while SPMMV and SPCSV were detected in 9.8% and 5.4% of the assessed plants, respectively. Wild plants in Uganda were infected with the East African (EA), common (C), and the ordinary (O) strains, or co-infected with the EA and the C strain of SPFMV. The viruses and virus-like diseases were more frequent in the eastern agro-ecological zone than the western and central zones, which contrasted with known incidences of these viruses in sweetpotato crops, except for northern zone where incidences were lowest in wild plants as in sweetpotato. The NIb/CP junction in SPMMV was determined experimentally which facilitated CP-based phylogenetic and evolutionary analyses of SPMMV. Isolates of all the three viruses from wild plants were genetically similar to those found in cultivated sweetpotatoes in East Africa. There was no evidence of host-driven population genetic structures suggesting frequent transmission of these viruses between their wild and cultivated hosts. The p22 RNA silencing suppressor-encoding sequence was absent in a few SPCSV isolates, but regardless of this, SPCSV isolates incited sweet potato virus disease (SPVD) in sweetpotato plants co-infected with SPFMV, indicating that p22 is redundant for synergism between SCSV and SPFMV. Molecular evolutionary analysis revealed that isolates of strain EA of SPFMV that is largely restricted geographically in East Africa experience frequent recombination in comparison to isolates of strain C that is globally distributed. Moreover, non-homologous recombination events between strains EA and C were rare, despite frequent co-infections of these strains in wild plants, suggesting purifying selection against non-homologous recombinants between these strains or that such recombinants are mostly not infectious. Recombination was detected also in the 5 - and 3 -proximal regions of the SPMMV genome providing the first evidence of recombination in genus Ipomovirus, but no recombination events were detected in the characterized genomic regions of SPCSV. Strong purifying selection was implicated on evolution of majority of amino acids of the proteins encoded by the analyzed genomic regions of SPFMV, SPMMV and SPCSV. However, positive selection was predicted on 17 amino acids distributed over the whole the coat protein (CP) in the globally distributed strain C, as compared to only 4 amino acids in the multifunctional CP N-terminus (CP-NT) of strain EA largely restricted geographically to East Africa. A few amino acid sites in the N-terminus of SPMMV P1, the p7 protein and RNA silencing suppressor proteins p22 and RNase3 of SPCSV were also submitted to positive selection. Positively selected amino acids may constitute ligand-binding domains that determine interactions with plant host and/or insect vector factors. The P1 proteinase of SPMMV (genus Ipomovirus) seems to respond to needs of adaptation, which was not observed with the helper component proteinase (HC-Pro) of SPMMV, although the HC-Pro is responsible for many important molecular interactions in genus Potyvirus. Because the centre of origin of cultivated sweetpotato is in the Americas from where the crop was dispersed to other continents in recent history (except for the Australasia and South Pacific region), it would be expected that identical viruses and their strains occur worldwide, presuming virus dispersal with the host. Apparently, this seems not to be the case with SPMMV, the strain EA of SPFMV and the strain EA of SPCSV that are largely geographically confined in East Africa where they are predominant and occur both in natural and agro-ecosystems. The geographical distribution of plant viruses is constrained more by virus-vector relations than by virus-host interactions, which in accordance of the wide range of natural host species and the geographical confinement to East Africa suggest that these viruses existed in East African wild plants before the introduction of sweetpotato. Subsequently, these studies provide compelling evidence that East Africa constitutes a cradle of SPFMV strain EA, SPCSV strain EA, and SPMMV. Therefore, sweet potato virus disease (SPVD) in East Africa may be one of the examples of damaging virus diseases resulting from exchange of viruses between introduced crops and indigenous wild plant species. Keywords: Convolvulaceae, East Africa, epidemiology, evolution, genetic variability, Ipomoea, recombination, SPCSV, SPFMV, SPMMV, selection pressure, sweetpotato, wild plant species Author s Address: Arthur K. Tugume, Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Latokartanonkaari 7, P.O Box 27, FIN-00014, Helsinki, Finland. Email: tugume.arthur@helsinki.fi Author s Present Address: Arthur K. Tugume, Department of Botany, Faculty of Science, Makerere University, P.O. Box 7062, Kampala, Uganda. Email: aktugume@botany.mak.ac.ug, tugumeka@yahoo.com

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plant species differ in their effects on ecosystem productivity and it is recognised that these effects are partly due to plant species-specific influences on soil processes. Until recently, however, not much attention was given to the potential role played by soil biota in these species-specific effects. While soil decomposers are responsible for governing the availability of nutrients for plant production, they simultaneously depend on the amount of carbon provided by plants. Litter and rhizodeposition constitute the two basal resources that plants provide to soil decomposer food webs. While it has been shown that both of these can have effects on soil decomposer communities that differ among plant species, the putative significance of these effects for plant nitrogen (N) acquisition is currently understudied. My PhD work aimed at clarifying whether the species-specific influences of three temperate grassland plants on the soil microfood-web, through rhizodeposition and litter, can feed back to plant N uptake. The methods and approach used (15N labelling of plant litter in microcosm experiments) revealed to be an effective combination of tools in studying these feedbacks. Plant effects on soil organisms were shown to differ significantly between plant species and the effects could be followed across several trophic levels. The labelling of litter further permitted the evaluation of plant acquisition of N derived from soil organic matter. The results show that the structure of the soil microfood-web can have a significant role in plant N acquisition when the structure is experimentally manipulated, such as when comparing systems consisting of microbes to those consisting of microbes and their grazers. However, despite this, the results indicate that differences in N uptake from soil organic matter between different plant species are not related to the effects these species exert on the structure of the soil microfood-web. Rather, these differences in N uptake seem to be determined by other species-specific traits of live plants and their litter. My results thus indicate that different resources provided by different plant species may not induce species-specific decomposer feedbacks on plant N uptake from soil organic matter. This further suggests that the species-specific plant effects on soil decomposer communities may not, at least in the short term, have significant consequences on plant production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During recent decades, thermal and radioactive discharges from nuclear power plants into the aquatic environment have become the subject of lively debate as an ecological concern. The target of this thesis was to summarize the large quantity of results obtained in extensive monitoring programmes and studies carried out in recipient sea areas off the Finnish nuclear power plants at Loviisa and Olkiluoto during more than four decades. The Loviisa NPP is located on the coast of the Gulf of Finland and Olkiluoto NPP on that of the Bothnian Sea. The state of the Gulf of Finland is clearly more eutrophic; the nutrient concentrations in the surface water are about 1½ 2 times higher at Loviisa than at Olkiluoto, and the total phosphorus concentrations still increased in both areas (even doubled at Loviisa) between the early 1970s and 2000. Thus, it is a challenge to distinguish the local effects of thermal discharges from the general eutrophication process of the Gulf of Finland. The salinity is generally low in the brackish-water conditions of the northern Baltic Sea, being however about 1 higher at Olkiluoto than at Loviisa (the salinity of surface water varying at the latter from near to 0 in early spring to 4 6 in late autumn). Thus, many marine and fresh-water organisms live in the Loviisa area close to their limit of existence, which makes the biota sensitive to any additional stress. The characteristics of the discharge areas of the two sites differ from each other in many respects: the discharge area at Loviisa is a semi-enclosed bay in the inner archipelago, where the exchange of water is limited, while the discharge area at Olkiluoto is more open, and the exchange of water with the open Bothnian Sea is more effective. The effects of the cooling water discharged from the power plants on the temperatures in the sea were most obvious in winter. The formation of a permanent ice cover in the discharge areas has been delayed in early winter, and the break-up of the ice occurs earlier in spring. The prolonging of the growing season and the disturbance of the overwintering time, in conditions where the biota has adjusted to a distinct rest period in winter, have been the most significant biological effects of the thermal pollution. The soft-bottom macrofauna at Loviisa has deteriorated to the point of almost total extinction at many sampling stations during the past 40 years. A similar decline has been reported for the whole eastern Gulf of Finland. However, the local eutrophication process seems to have contributed into the decline of the zoobenthos in the discharge area at Loviisa. Thermal discharges have increased the production of organic matter, which again has led to more organic bottom deposits. These have in turn increased the tendency of the isolated deeps to a depletion of oxygen, and this has further caused strong remobilization of phosphorus from the bottom sediments. Phytoplankton primary production and primary production capacity doubled in the whole area between the late 1960s and the late 1990s, but started to decrease a little at the beginning of this century. The focus of the production shifted from spring to mid- and late summer. The general rise in the level of primary production was mainly due to the increase in nutrient concentrations over the whole Gulf of Finland, but the thermal discharge contributed to a stronger increase of production in the discharge area compared to that in the intake area. The eutrophication of littoral vegetation in the discharge area has been the most obvious, unambiguous and significant biological effect of the heated water. Myriophyllum spicatum, Potamogeton perfoliatus and Potamogeton pectinatus, and vigorous growths of numerous filamentous algae as their epiphytes have strongly increased in the vicinity of the cooling water outlet, where they have formed dense populations in the littoral zone in late summer. However, the strongest increase of phytobenthos has extended only to a distance of about 1 km from the outlet, i.e., the changes in vegetation have been largest in those areas that remain ice-free in winter. Similar trends were also discernible at Olkiluoto, but to a clearly smaller extent, which was due to the definitely weaker level of background eutrophy and nutrient concentrations in the Bothnian Sea, and the differing local hydrographical and biological factors prevailing in the Olkiluoto area. The level of primary production has also increased at Olkiluoto, but has remained at a clearly lower level than at Loviisa. In spite of the analogous changes observed in the macrozoobenthos, the benthic fauna has remained strong and diversified in the Olkiluoto area. Small amounts of local discharge nuclides were regularly detected in environmental samples taken from the discharge areas: tritium in seawater samples, and activation products, such as 60Co, 58Co, 54Mn, 110mAg, 51Cr, in suspended particulate matter, bottom sediments and in several indicator organisms (e.g., periphyton and Fucus vesiculosus) that effectively accumulate radioactive substances from the medium. The tritium discharges and the consequent detection frequency and concentrations of tritium in seawater were higher at Loviisa, but the concentrations of the activation products were higher at Olkiluoto, where traces of local discharge nuclides were also observed over a clearly wider area, due to the better exchange of water than at Loviisa, where local discharge nuclides were only detected outside Hästholmsfjärden Bay quite rarely and in smaller amounts. At the farthest, an insignificant trace amount (0.2 Bq kg-1 d.w.) of 60Co originating from Olkiluoto was detected in Fucus at a distance of 137 km from the power plant. Discharge nuclides from the local nuclear power plants were almost exclusively detected at the lower trophic levels of the ecosystems. Traces of local discharge nuclides were very seldom detected in fish, and even then only in very low quantities. As a consequence of the reduced discharges, the concentrations of local discharge nuclides in the environment have decreased noticeably in recent years at both Loviisa and Olkiluoto. Although the concentrations in environmental samples, and above all, the discharge data, are presented as seemingly large numbers, the radiation doses caused by them to the population and to the biota are very low, practically insignificant. The effects of the thermal discharges have been more significant, at least to the wildlife in the discharge areas of the cooling water, although the area of impact has been relatively small. The results show that the nutrient level and the exchange of water in the discharge area of a nuclear power plant are of crucial importance.