26 resultados para Hipertensão Arterial Sistêmica (HAS)
Resumo:
Background: As the human body ages, the arteries gradually lose their elasticity and become stiffer. Although inevitable, this process is influenced by hereditary and environmental factors. Interestingly, many classic cardiovascular risk factors affect the arterial stiffness. During the last decade, accelerated arterial stiffening has been recognized as an important cardiovascular risk factor associated with increased mortality as well as with several chronic disorders. Objectives: This thesis examines the role of arterial stiffness in relation to variations in a physiological feature in healthy individuals. In addition, the effect on arterial stiffness of an acute transitory disease and the effect of a chronic disease are studied. Furthermore, the thesis analyzes the prognostic value of a marker of arterial stiffness in individuals with chronic disease. Finally, a potential method of reducing arterial stiffness is evaluated. Material and study design: The first study examines pulse wave reflection and pulse wave velocity in relation to muscle fibre distribution in healthy middle-aged men. In the second study, pulse wave reflection in women with current or previous preeclampsia is compared to a healthy control group. The effect of aging on the different blood pressure indices in patients with type 1 diabetes is examined in the third study, whereas the fourth paper studies the relation between these blood pressure indices and mortality in type 2 diabetes. The fifth study evaluates how intake of a fermented milk product containing bioactive peptides affects pulse wave reflection in individuals with mild hypertension. Results and conclusions: Muscle fibre type distribution is not an independent determinant of arterial stiffness in middle-aged males. Pulse wave reflection is increased in pregnant women with preeclampsia, but not in previously preeclamptic non-pregnant women. Patients with type 1 diabetes have a higher and more rapidly increasing pulse pressure, which suggests accelerated arterial stiffening. In elderly type 2 diabetic patients, very high and very low levels of pulse pressure are associated with higher mortality. Intake of milk-derived bioactive peptides reduces pulse wave reflection in hypertensive males but not in hypertensive females.
Resumo:
Atherosclerosis is the main underlying pathology of coronary heart disease. Coronary heart disease is a serious health problem in Finland, and it is the leading cause of morbidity and mortality in industrialized countries. Psychological stress correlates with coronary heart disease events – myocardial infarction and sudden death, which are the most common clinical syndromes of atherosclerotic narrowing of arteries. The present series of studies examines the interaction between stress and endothelial function in relation to atherosclerosis. The study also aims to give new information on the mechanisms through which stress has its effect on atherosclerosis progression, focusing on possible relations between psychological stress and the functioning of the endothelium. Our project is based on data from one of the largest national epidemiological studies, the Cardiovascular Risk in Young Finns study, which has monitored the development of risk factors for coronary heart disease in 3596 young adults since 1980. The present study combines experimental stress research with epidemiology and uses an advanced method for examining atherosclerosis development in healthy subjects (intima-media thickness ultrasound measurement). The physiological parameters used were heart rate, respiratory sinus arrhythmia and pre-ejection period. Chronic stress was assessed by vital exhaustion. The ultrasound measurements that served as the indexes of preclinical atherosclerosis were carotid intima-media thickness, brachial flow-mediated dilatation and carotid artery compliance. The effects of cardiovascular risk factors found to be important were taken into account: serum cholesterols level, triglyceride level, serum insulin level and systolic and diastolic blood pressure. There were 69, 1596, 81 and 1721 participants in studies I-IV, respectively. The results showed that both chronic and acute stress may exert an effect on atherosclerosis in subjects with impaired endothelial responses. The findings are consistent with the idea that risk factors are more harmful if the endothelium is not working properly. Chronic stress was found to be a risk if it has resulted in ineffective cardiac stress reactivity or delayed recovery. Men were shown to be at increased risk for atherosclerotic progression in early life, which suggests men’s decreased stress coping ability in relation to stressful psychosocial coronary risk factors. Autonomic imbalance may be the common mechanism of the stress influence on atherosclerosis development. The results of the present study contain background information for the identification the first stages of atherosclerosis, and they may be useful for preventive medicine programs for young adults and could help to improve cardiovascular health in Finland as well as in other countries.
Resumo:
Atherosclerosis is a disease of the arteries; its characteristic features include chronic inflammation, extra- and intracellular lipid accumulation, extracellular matrix remodeling, and an increase in extracellular matrix volume. The underlying mechanisms in the pathogenesis of advanced atherosclerotic plaques, that involve local acidity of the extracellular fluid, are still incompletely understood. In this thesis project, my co-workers and I studied the different mechanisms by which local extracellular acidity could promote accumulation of the atherogenic apolipoprotein B-100 (apoB-100)-containing plasma lipoprotein particles in the inner layer of the arterial wall, the intima. We found that lipolysis of atherogenic apoB-100-containing plasma lipoprotein particles (LDL, IDL, and sVLDL) by the secretory phospholipase A2 group V (sPLA2-V) enzyme, was increased at acidic pH. Also, the binding of apoB-100-containing plasma lipoprotein particles to human aortic proteoglycans was dramatically enhanced at acidic pH. Additionally, lipolysis by sPLA2-V enzyme further increased this binding. Using proteoglycan-affinity chromatography, we found that sVLDL lipoprotein particles consist of populations, differing in their affinities toward proteoglycans. These populations also contained different amounts of apolipoprotein E (apoE) and apolipoprotein C-III (apoC-III); the amounts of apoC-III and apoE per particle were highest in the population with the lowest affinity toward proteoglycans. Since PLA2-modification of LDL particles has been shown to change their aggregation behavior, we also studied the effect of acidic pH on the monolayer structure covering lipoprotein particles after PLA2-induced hydrolysis. Using molecular dynamics simulations, we found that, in acidity, the monolayer is more tightly packed laterally; moreover, its spontaneous curvature is negative, suggesting that acidity may promote lipoprotein particles fusion. In addition to extracellular lipid accumulation, the apoB-100-containing plasma lipoprotein particles can be taken up by inflammatory cells, namely macrophages. Using radiolabeled lipoprotein particles and cell cultures, we showed that sPLA2-V-modification of LDL, IDL, and sVLDL lipoproteins particles, at neutral or acidic pH, increased their uptake by human monocyte-derived macrophages.
Resumo:
More than 40% of all deaths in Finland are caused by atherosclerosis. The complications of atherosclerosis are due to either detachment of the luminal endothelium (erosion) or rupture of the fibrous cap of an atherosclerotic plaque (rupture). As a result, a thrombus is formed at the site of the intimal lesion. Indeed, erosions cause roughly 40% of sudden atherothrombotic deaths and 25% of all atherothrombotic deaths. Erosions are overrepresented in young subjects, diabetics, smokers and women. This dissertation focuses on endothelial erosion. Endothelial erosions were studied in the context of arterial grafting and vascular inflammation. Special attention was given to the role of intimal mast cells and the methodological viewpoints of reliable identification of endothelial erosions. Mast cells are inflammatory cells mostly known for their ability to cause allergic symptoms. In addition to occurring in skin and mucosal surfaces, mast cells are abundant in arterial intima and adventitia. In this study, mast cells were found to associate with endothelial erosions in non-lesional and atherosclerotic human coronary arteries. Thus, mast cells may participate in atherogenesis at the initial phases of the disease process already. We also showed that the mast cell proteases tryptase, chymase, and cathepsin G are all capable of cleaving molecules essential for endothelial cell-to-cell and cell-to-extracellular matrix interactions, such as VE-cadherin and fibronectin. Symptom-causing carotid plaques were found to contain more inflammatory cells, especially mast cells, than non-symptom-causing plaques. Furthermore, the atherogenic serum lipid profile and the degree of carotid stenosis turned out to correlate with the density of carotid plaque mast cells. Apoptotic and proliferating cells were more abundant in non-symptom causing plaques (active renewal of endothelial cells), but erosions were larger in symptom-causing plaques (capacity of endothelial regeneration exceeded). The process of identifying endothelial erosions with immunostainings has been ambiguous, since both endothelial cells and platelets express largely the same antigens. This may have caused inaccurate interpretations of the presence of endothelial erosion. In the last substudy of this thesis we developed a double immunostaining method for simultaneous identification of endothelial cells and platelets. This method enables more reliable identification of endothelial erosions.
Resumo:
The leading cause of death in the Western world continues to be coronary heart disease (CHD). At the root of the disease process is dyslipidemia an aberration in the relevant amounts of circulating blood lipids. Cholesterol builds up in the arterial wall and following rupture of these plaques, myocardial infarction or stroke can occur. Heart disease runs in families and a number of hereditary forms are known. The leading cause of adult dyslipidemia presently however is overweight and obesity. This thesis work presents an investigation of the molecular genetics of common, hereditary dyslipidemia and the tightly related condition of obesity. Familial combined hyperlipidemia (FCHL) is the most common hereditary dyslipidemia in man with an estimated population prevalence of 1-6%. This complex disease is characterized by elevated levels of serum total cholesterol, triglycerides or both and is observed in about 20% of individuals with premature CHD. Our group identified the disease to be associated with genetic variation in the USF1 transcription factor gene. USF1 has a key role in regulating other genes that control lipid and glucose metabolism as well as the inflammatory response all central processes in the progression of atherosclerosis and CHD. The first two works of this thesis aimed at understanding how these USF1 variants result in increased disease risk. Among the many, non-coding single-nucleotide polymorphisms (SNPs) that associated with the disease, one was found to have a functional effect. The risk-enhancing allele of this SNP seems to eradicate the ability of the important hormone insulin to induce the expression of USF1 in peripheral tissues. The resultant changes in the expression of numerous USF1 target genes over time probably enhance and accelerate the atherogenic processes. Dyslipidemias often represent an outcome of obesity and in the final work of this thesis we wanted to address the metabolic pathways related to acquired obesity. It is recognized that active processes in adipose tissue play an important role in the development of dyslipidemia, insulin resistance and other pathological conditions associated with obesity. To minimize the confounding effects of genetic differences present in most human studies, we investigated a rare collection of identical twins that differed significantly in the amount of body fat. In the obese, but otherwise healthy young adults, several notable changes were observed. In addition to chronic inflammation, the adipose tissue of the obese co-twins was characterized by a marked (47%) decrease in amount of mitochondrial DNA (mtDNA) a change associated with mitochondrial dysfunction. The catabolism of branched chain amino acids (BCAAs) was identified as the most down-regulated process in the obese co-twins. A concordant increase in the serum level of these insulin secretagogues was identified. This hyperaminoacidemia may provide the feed-back signal from insulin resistant adipose tissue to the pancreas to ensure an appropriately augmented secretory response. The down regulation of BCAA catabolism correlated closely with liver fat accumulation and insulin. The single most up-regulated gene (5.9 fold) in the obese co-twins was osteopontin (SPP1) a cytokine involved in macrophage recruitment to adipose tissue. SPP1 is here implicated as an important player in the development of insulin resistance. These studies of exceptional study samples provide better understanding of the underlying pathology in common dyslipidemias and other obesity associated diseases important for future improvement of intervention strategies and treatments to combat atherosclerosis and coronary heart disease.
Resumo:
Atherosclerosis is an inflammatory disease characterized by accumulation of lipids and fibrous connective tissue in the arterial wall. Recently, it has been suggested that decrease in the pH of extracellular fluid of the arterial intima may enhance LDL accumulation by increasing binding of the LDL to matrix proteoglycans and also by making the plaque more favorable for acidic enzymes to be active. Many lysosomal acidic enzymes have been found in atherosclerotic plaques. In this thesis, we were able to induce secretion of lysosomal acidic cathepsin F from human monocyte-derived macrophages by stimulation with angiotensin II. We also showed that LDL pre-proteolyzed with cathepsin S was more prone to subsequent hydrolytic modifications by lipases. Especially acidic secretory sphingomyelinase was able to hydrolyze pre-proteolyzed LDL even at neutral pH. We also showed that the proteolyzed and lipolyzed LDL particles were able to bind more efficiently to human aortic proteoglycans. In addition, the role of extracellular acidic pH on the ability of macrophages to internalize LDL was studied. At acidic pH, the production of cell surface proteoglycans in macrophages was increased as well as the binding of native and modified LDL to cell surface proteoglycans. Furthermore, macrophages cultured at acidic pH showed increased internalization of modified and native LDL leading to foam cell formation. This thesis revealed various mechanisms by which acidic pH can increase LDL retention and accumulation in the arterial intima and has the potential to increase the progression of atherosclerosis.
Resumo:
Opioids are most commonly used for treatment of severe pain. However, the fear of respiratory depression has restricted the use of opioids. Depending on the monitoring system used, different modes of opioid respiratory effects have been noted in previous studies. All opioids also cause alterations in hemodynamics at least to some extent. The main goal of this series of investigations was to elucidate the native ventilatory and hemodynamic effects of different opioids. Studies I-IV each involved 8 healthy male volunteers. Study V involved 13 patients with lower or upper extremity traumas. The opioids studied were morphine, oxycodone, pethidine, fentanyl, alfentanil, tramadol and ketamine. The respiratory parameters used in this study were breathing pattern measured with respiratory inductive plethysmography, gas exchange measured with indirect calorimetry, blood gas analysis and pulse oximetry. Hemodynamics was measured with arterial blood pressure, heart rate and oxygen consumption. Plasma catecholamine and histamine concentrations were also determined. All opioids studied caused an alteration in respiratory function. Respiratory rate, alveolar ventilation and minute ventilation decreased, while tidal volume increased in most situations. Breathing pattern was also significantly affected after opioid administration. The respiratory depression caused by oxycodone was deeper than the one caused by same dose of morphine. An equianalgesic dose of tramadol caused markedly smaller respiratory depression compared to pethidine. The potency ratio for respiratory depression of fentanyl and alfentanil is similar to analgesic potency ratio studied elsewhere. Racemic ketamine attenuated the respiratory depression caused by fentanyl, if measured with minute ventilation. However, this effect was counteracted by increased oxygen consumption. Supplemental oxygen did not offer any benefits, nor did it cause any atelectasis when given to opioid treated trauma patients. Morphine caused a transient hemodynamic stimulation, which was accompanied by an increase in oxygen consumption. Oxycodone, alfentanil, fentanyl, tramadol and pethidine infusions had minimal effects on hemodynamics. Plasma catecholamine concentrations were increased after high dose opioid administration. Plasma histamine concentrations were not elevated after morphine nor oxycodone administration. Respiratory depression is a side effect noted with all opioids. The profile of this phenomenon is quite similar with different opioid-receptor agonists. The hemodynamic effects of opioids may vary depending on the opioid used, morphine causing a slight hemodynamic stimulation. However, all opioids studied could be considered hemodynamically stable.
Resumo:
Atherosclerosis is an inflammatory disease characterized by accumulation of lipids in the inner layer of the arterial wall. During atherogenesis, various structures that are recognized as non-self by the immune system, such as modified lipoproteins, are deposited in the arterial wall. Accordingly, atherosclerotic lesions and blood of humans and animals with atherosclerotic lesions show signs of activation of both innate and adaptive immune responses. Although immune attack is initially a self-protective reaction, which is meant to destroy or remove harmful agents, a chronic inflammatory state in the arterial wall accelerates atherosclerosis. Indeed, various modulations of the immune system of atherosclerosis-prone animals have provided us with convincing evidence that immunological mechanisms play an important role in the pathogenesis of atherosclerosis. This thesis focuses on the role of complement system, a player of the innate immunity, in atherosclerosis. Complement activation via any of the three different pathways (classical, alternative, lectin) proceeds as a self-amplifying cascade, which leads to the generation of opsonins, anaphylatoxins C3a and C5a, and terminal membrane-attack complex (MAC, C5b-9), all of which regulate the inflammatory response and act in concert to destroy their target structures. To prevent uncontrolled complement activation or its attack against normal host cells, complement needs to be under strict control by regulatory proteins. The complement system has been shown to be activated in atherosclerotic lesions, modified lipoproteins and immune complexes containing oxLDL, for instance, being its activators. First, we investigated the presence and role of complement regulators in human atherosclerotic lesions. We found that inhibitors of the classical and alternative pathways, C4b-binding protein and factor H, respectively, were present in atherosclerotic lesions, where they localized in the superficial proteoglycan-rich layer. In addition, both inhibitors were found to bind to arterial proteoglycans in vitro. Immunohistochemical stainings revealed that, in the superficial layer of the intima, complement activation had been limited to the C3 level, whereas in the deeper intimal layers, complement activation had proceeded to the terminal C5b-9 level. We were also able to show that arterial proteoglycans inhibit complement activation in vitro. These findings suggested to us that the proteoglycan-rich layer of the arterial intima contains matrix-bound complement inhibitors and forms a protective zone, in which complement activation is restricted to the C3 level. Thus, complement activation is regulated in atherosclerotic lesions, and the extracellular matrix is involved in this process. Next, we studied whether the receptors for the two complement derived effectors, anaphylatoxins C3a and C5a, are expressed in human coronary atherosclerotic lesions. Our results of immunohistochemistry and RT-PCR analysis showed that, in contrast to normal intima, C3aR and C5aR were highly expressed in atherosclerotic lesions. In atherosclerotic plaques, the principal cells expressing both C3aR and C5aR were macrophages. Moreover, T cells expressed C5aR, and a small fraction of them also expressed C3aR, mast cells expressed C5aR, whereas endothelial cells and subendothelial smooth muscle cells expressed both C3aR and C5aR. These results suggested that intimal cells can respond to and become activated by complement-derived anaphylatoxins. Finally, we wanted to learn, whether oxLDL-IgG immune complexes, activators of the classical complement pathway, could have direct cellular effects in atherogenesis. Thus, we tested whether oxLDL-IgG immune complexes affect the survival of human monocytes, the precursors of macrophages, which are the most abundant inflammatory cell type in atherosclerotic lesions. We found that OxLDL-IgG immune complexes, in addition to transforming monocytes into foam cells, promoted their survival by decreasing their spontaneous apoptosis. This effect was mediated by cross-linking Fc receptors with ensuing activation of Akt-dependent survival signaling. Our finding revealed a novel mechanism by which oxLDL-IgG immune complexes can directly affect the accumulation of monocyte-macrophages in human atherosclerotic lesions and thus play a role in atherogenesis.
Resumo:
Background. Cardiovascular disease (CVD) remains the most serious threat to life and health in industrialized countries. Atherosclerosis is the main underlying pathology associated with CVD, in particular coronary artery disease (CAD), ischaemic stroke, and peripheral arterial disease. Risk factors play an important role in initiating and accelerating the complex process of atherosclerosis. Most studies of risk factors have focused on the presence or absence of clinically defined CVD. Less is known about the determinants of the severity and extent of atherosclerosis in symptomatic patients. Aims. To clarify the association between coronary and carotid artery atherosclerosis, and to study the determinants associated with these abnormalities with special regard to novel cardiovascular risk factors. Subjects and methods. Quantitative coronary angiography (QCA) and B-mode ultrasound were used to assess coronary and carotid artery atherosclerosis in 108 patients with clinically suspected CAD referred for elective coronary angiography. To evaluate anatomic severity and extent of CAD, several QCA parameters were incorporated into indexes. These measurements reflected CAD severity, extent, and overall atheroma burden and were calculated for the entire coronary tree and separately for different coronary segments (i.e., left main, proximal, mid, and distal segments). Maximum and mean intima-media thickness (IMT) values of carotid arteries were measured and expressed as mean aggregate values. Furthermore, the study design included extensive fasting blood samples, oral glucose tolerance test, and an oral fat-load test to be performed in each participant. Results. Maximum and mean IMT values were significantly correlated with CAD severity, extent, and atheroma burden. There was heterogeneity in associations between IMT and CAD indexes according to anatomical location of CAD. Maximum and mean IMT values, respectively, were correlated with QCA indexes for mid and distal segments but not with the proximal segments of coronary vessels. The values of paraoxonase-1 (PON1) activity and concentration, respectively, were lower in subjects with significant CAD and there was a significant relationship between PON1 activity and concentration and coronary atherosclerosis assessed by QCA. PON1 activity was a significant determinant of severity of CAD independently of HDL cholesterol. Neither PON1 activity nor concentration was associated with carotid IMT. The concentration of triglycerides (TGs), triglyceride-rich lipoproteins (TRLs), oxidized LDL (oxLDL), and the cholesterol content of remnant lipoprotein particle (RLP-C) were significantly increased at 6 hours after intake of an oral fatty meal as compared with fasting values. The mean peak size of LDL remained unchanged 6 hours after the test meal. The correlations between total TGs, TRLs, and RLP-C in fasting and postprandial state were highly significant. RLP-C correlated with oxLDL both in fasting and in fed state and inversely with LDL size. In multivariate analysis oxLDL was a determinant of severity and extent of CAD. Neither total TGs, TRLs, oxLDL, nor LDL size were linked to carotid atherosclerosis. Insulin resistance (IR) was associated with an increased severity and extent of coronary atherosclerosis and seemed to be a stronger predictor of coronary atherosclerosis in the distal parts of the coronary tree than in the proximal and mid parts. In the multivariate analysis IR was a significant predictor of the severity of CAD. IR did not correlate with carotid IMT. Maximum and mean carotid IMT were higher in patients with the apoE4 phenotype compared with subjects with the apoE3 phenotype. Likewise, patients with the apoE4 phenotype had a more severe and extensive CAD than individuals with the apoE3 phenotype. Conclusions. 1) There is an association between carotid IMT and the severity and extent of CAD. Carotid IMT seems to be a weaker predictor of coronary atherosclerosis in the proximal parts of the coronary tree than in the mid and distal parts. 2) PON1 activity has an important role in the pathogenesis of coronary atherosclerosis. More importantly, the study illustrates how the protective role of HDL could be modulated by its components such that equivalent serum concentrations of HDL cholesterol may not equate with an equivalent, potential protective capacity. 3) RLP-C in the fasting state is a good marker of postprandial TRLs. Circulating oxLDL increases in CAD patients postprandially. The highly significant positive correlation between postprandial TRLs and postprandial oxLDL suggests that the postprandial state creates oxidative stress. Our findings emphasize the fundamental role of LDL oxidation in the development of atherosclerosis even after inclusion of conventional CAD risk factors. 4) Disturbances in glucose metabolism are crucial in the pathogenesis of coronary atherosclerosis. In fact, subjects with IR are comparable with diabetic subjects in terms of severity and extent of CAD. 5) ApoE polymorphism is involved in the susceptibility to both carotid and coronary atherosclerosis.
Resumo:
Backround and Purpose The often fatal (in 50-35%) subarachnoid hemorrhage (SAH) caused by saccular cerebral artery aneurysm (SCAA) rupture affects mainly the working aged population. The incidence of SAH is 10-11 / 100 000 in Western countries and twice as high in Finland and Japan. The estimated prevalence of SCAAs is around 2%. Many of those never rupture. Currently there are, however, no diagnostic methods to identify rupture-prone SCAAs from quiescent, (dormant) ones. Finding diagnostic markers for rupture-prone SCAAs is of primary importance since a SCAA rupture has such a sinister outcome, and all current treatment modalities are associated with morbidity and mortality. Also the therapies that prevent SCAA rupture need to be developed to as minimally invasive as possible. Although the clinical risk factors for SCAA rupture have been extensively studied and documented in large patient series, the cellular and molecular mechanisms how these risk factors lead to SCAA wall rupture remain incompletely known. Elucidation of the molecular and cellular pathobiology of the SCAA wall is needed in order to develop i) novel diagnostic tools that could identify rupture-prone SCAAs or patients at risk of SAH, and to ii) develop novel biological therapies that prevent SCAA wall rupture. Materials and Methods In this study, histological samples from unruptured and ruptured SCAAs and plasma samples from SCAA carriers were compared in order to identify structural changes, cell populations, growth factor receptors, or other molecular markers that would associate with SCAA wall rupture. In addition, experimental saccular aneurysm models and experimental models of mechanical vascular injury were used to study the cellular mechanisms of scar formation in the arterial wall, and the adaptation of the arterial wall to increased mechanical stress. Results and Interpretation Inflammation and degeneration of the SCAA wall, namely loss of mural cells and degradation of the wall matrix, were found to associate with rupture. Unruptured SCAA walls had structural resemblance with pads of myointimal hyperplasia or so called neointima that characterizes early atherosclerotic lesions, and is the repair and adaptation mechanism of the arterial wall after injury or increased mechanical stress. As in pads of myointimal hyperplasia elsewhere in the vasculature, oxidated LDL was found in the SCAA walls. Immunity against OxLDL was demonstrated in SAH patients with detection of circulating anti-oxidized LDL antibodies, which were significantly associated with the risk of rupture in patients with solitary SCAAs. Growth factor receptors associated with arterial wall remodeling and angiogenesis were more expressed in ruptured SCAA walls. In experimental saccular aneurysm models, capillary growth, arterial wall remodeling and neointima formation were found. The neointimal cells were shown to originate from the experimental aneurysm wall with minor contribution from the adjacent artery, and a negligible contribution of bone marrow-derived neointimal cells. Since loss of mural cells characterizes ruptured human SCAAs and likely impairs the adaptation and repair mechanism of ruptured or rupture-prone SCAAs, we investigated also the hypothesis that bone marrow-derived or circulating neointimal precursor cells could be used to enhance neointima formation and compensate the impaired repair capacity in ruptured SCAA walls. However, significant contribution of bone marrow cells or circulating mononuclear cells to neointima formation was not found.