157 resultados para Datavetenskap (datalogi)
Resumo:
Low Level Virtual Machine (LLVM) on moderni koko ohjelman elinkaaren optimointeihin keskittyvä kääntäjäarkkitehtuuri. Java-virtuaalikone on puolestaan suosittu korkean tason virtuaalikone, johon monien ohjelmointikielten toteutus nykyään perustuu. Tutkielmassa esitellään alun perin suorituskykyisen C- ja C++-kääntäjän toteuttamiseksi luotu LLVM-järjestelmä ja arvioidaan, miten hyvin LLVM-infrastruktuuri tukee Java-virtuaalikoneen toteuttamista. Tämän lisäksi tutkielmassa pohditaan, miten dynaamisten kielten usein tarvitsemaa suoritusaikaista ja lähdekieliriippuvaista optimointia voidaan tukea lähdekieliriippumattomassa LLVM-järjestelmässä. Lopuksi tutkielmassa esitellään kehitysehdotelma yleisen roskienkeruuinfrastruktuurin toteuttamiseksi LLVM:ssä, mikä tukisi dynaamista muistia automaattisesti hallitsevien kielten, kuten Javan ja sen virtuaalikoneen toteuttamista.
Resumo:
Metabolism is the cellular subsystem responsible for generation of energy from nutrients and production of building blocks for larger macromolecules. Computational and statistical modeling of metabolism is vital to many disciplines including bioengineering, the study of diseases, drug target identification, and understanding the evolution of metabolism. In this thesis, we propose efficient computational methods for metabolic modeling. The techniques presented are targeted particularly at the analysis of large metabolic models encompassing the whole metabolism of one or several organisms. We concentrate on three major themes of metabolic modeling: metabolic pathway analysis, metabolic reconstruction and the study of evolution of metabolism. In the first part of this thesis, we study metabolic pathway analysis. We propose a novel modeling framework called gapless modeling to study biochemically viable metabolic networks and pathways. In addition, we investigate the utilization of atom-level information on metabolism to improve the quality of pathway analyses. We describe efficient algorithms for discovering both gapless and atom-level metabolic pathways, and conduct experiments with large-scale metabolic networks. The presented gapless approach offers a compromise in terms of complexity and feasibility between the previous graph-theoretic and stoichiometric approaches to metabolic modeling. Gapless pathway analysis shows that microbial metabolic networks are not as robust to random damage as suggested by previous studies. Furthermore the amino acid biosynthesis pathways of the fungal species Trichoderma reesei discovered from atom-level data are shown to closely correspond to those of Saccharomyces cerevisiae. In the second part, we propose computational methods for metabolic reconstruction in the gapless modeling framework. We study the task of reconstructing a metabolic network that does not suffer from connectivity problems. Such problems often limit the usability of reconstructed models, and typically require a significant amount of manual postprocessing. We formulate gapless metabolic reconstruction as an optimization problem and propose an efficient divide-and-conquer strategy to solve it with real-world instances. We also describe computational techniques for solving problems stemming from ambiguities in metabolite naming. These techniques have been implemented in a web-based sofware ReMatch intended for reconstruction of models for 13C metabolic flux analysis. In the third part, we extend our scope from single to multiple metabolic networks and propose an algorithm for inferring gapless metabolic networks of ancestral species from phylogenetic data. Experimenting with 16 fungal species, we show that the method is able to generate results that are easily interpretable and that provide hypotheses about the evolution of metabolism.
Resumo:
Large-scale chromosome rearrangements such as copy number variants (CNVs) and inversions encompass a considerable proportion of the genetic variation between human individuals. In a number of cases, they have been closely linked with various inheritable diseases. Single-nucleotide polymorphisms (SNPs) are another large part of the genetic variance between individuals. They are also typically abundant and their measuring is straightforward and cheap. This thesis presents computational means of using SNPs to detect the presence of inversions and deletions, a particular variety of CNVs. Technically, the inversion-detection algorithm detects the suppressed recombination rate between inverted and non-inverted haplotype populations whereas the deletion-detection algorithm uses the EM-algorithm to estimate the haplotype frequencies of a window with and without a deletion haplotype. As a contribution to population biology, a coalescent simulator for simulating inversion polymorphisms has been developed. Coalescent simulation is a backward-in-time method of modelling population ancestry. Technically, the simulator also models multiple crossovers by using the Counting model as the chiasma interference model. Finally, this thesis includes an experimental section. The aforementioned methods were tested on synthetic data to evaluate their power and specificity. They were also applied to the HapMap Phase II and Phase III data sets, yielding a number of candidates for previously unknown inversions, deletions and also correctly detecting known such rearrangements.
Resumo:
Topic detection and tracking (TDT) is an area of information retrieval research the focus of which revolves around news events. The problems TDT deals with relate to segmenting news text into cohesive stories, detecting something new, previously unreported, tracking the development of a previously reported event, and grouping together news that discuss the same event. The performance of the traditional information retrieval techniques based on full-text similarity has remained inadequate for online production systems. It has been difficult to make the distinction between same and similar events. In this work, we explore ways of representing and comparing news documents in order to detect new events and track their development. First, however, we put forward a conceptual analysis of the notions of topic and event. The purpose is to clarify the terminology and align it with the process of news-making and the tradition of story-telling. Second, we present a framework for document similarity that is based on semantic classes, i.e., groups of words with similar meaning. We adopt people, organizations, and locations as semantic classes in addition to general terms. As each semantic class can be assigned its own similarity measure, document similarity can make use of ontologies, e.g., geographical taxonomies. The documents are compared class-wise, and the outcome is a weighted combination of class-wise similarities. Third, we incorporate temporal information into document similarity. We formalize the natural language temporal expressions occurring in the text, and use them to anchor the rest of the terms onto the time-line. Upon comparing documents for event-based similarity, we look not only at matching terms, but also how near their anchors are on the time-line. Fourth, we experiment with an adaptive variant of the semantic class similarity system. The news reflect changes in the real world, and in order to keep up, the system has to change its behavior based on the contents of the news stream. We put forward two strategies for rebuilding the topic representations and report experiment results. We run experiments with three annotated TDT corpora. The use of semantic classes increased the effectiveness of topic tracking by 10-30\% depending on the experimental setup. The gain in spotting new events remained lower, around 3-4\%. The anchoring the text to a time-line based on the temporal expressions gave a further 10\% increase the effectiveness of topic tracking. The gains in detecting new events, again, remained smaller. The adaptive systems did not improve the tracking results.
Resumo:
Telecommunications network management is based on huge amounts of data that are continuously collected from elements and devices from all around the network. The data is monitored and analysed to provide information for decision making in all operation functions. Knowledge discovery and data mining methods can support fast-pace decision making in network operations. In this thesis, I analyse decision making on different levels of network operations. I identify the requirements decision-making sets for knowledge discovery and data mining tools and methods, and I study resources that are available to them. I then propose two methods for augmenting and applying frequent sets to support everyday decision making. The proposed methods are Comprehensive Log Compression for log data summarisation and Queryable Log Compression for semantic compression of log data. Finally I suggest a model for a continuous knowledge discovery process and outline how it can be implemented and integrated to the existing network operations infrastructure.
Resumo:
In this Thesis, we develop theory and methods for computational data analysis. The problems in data analysis are approached from three perspectives: statistical learning theory, the Bayesian framework, and the information-theoretic minimum description length (MDL) principle. Contributions in statistical learning theory address the possibility of generalization to unseen cases, and regression analysis with partially observed data with an application to mobile device positioning. In the second part of the Thesis, we discuss so called Bayesian network classifiers, and show that they are closely related to logistic regression models. In the final part, we apply the MDL principle to tracing the history of old manuscripts, and to noise reduction in digital signals.
Resumo:
Reuse of existing carefully designed and tested software improves the quality of new software systems and reduces their development costs. Object-oriented frameworks provide an established means for software reuse on the levels of both architectural design and concrete implementation. Unfortunately, due to frame-works complexity that typically results from their flexibility and overall abstract nature, there are severe problems in using frameworks. Patterns are generally accepted as a convenient way of documenting frameworks and their reuse interfaces. In this thesis it is argued, however, that mere static documentation is not enough to solve the problems related to framework usage. Instead, proper interactive assistance tools are needed in order to enable system-atic framework-based software production. This thesis shows how patterns that document a framework s reuse interface can be represented as dependency graphs, and how dynamic lists of programming tasks can be generated from those graphs to assist the process of using a framework to build an application. This approach to framework specialization combines the ideas of framework cookbooks and task-oriented user interfaces. Tasks provide assistance in (1) cre-ating new code that complies with the framework reuse interface specification, (2) assuring the consistency between existing code and the specification, and (3) adjusting existing code to meet the terms of the specification. Besides illustrating how task-orientation can be applied in the context of using frameworks, this thesis describes a systematic methodology for modeling any framework reuse interface in terms of software patterns based on dependency graphs. The methodology shows how framework-specific reuse interface specifi-cations can be derived from a library of existing reusable pattern hierarchies. Since the methodology focuses on reusing patterns, it also alleviates the recog-nized problem of framework reuse interface specification becoming complicated and unmanageable for frameworks of realistic size. The ideas and methods proposed in this thesis have been tested through imple-menting a framework specialization tool called JavaFrames. JavaFrames uses role-based patterns that specify a reuse interface of a framework to guide frame-work specialization in a task-oriented manner. This thesis reports the results of cases studies in which JavaFrames and the hierarchical framework reuse inter-face modeling methodology were applied to the Struts web application frame-work and the JHotDraw drawing editor framework.
Resumo:
Event-based systems are seen as good candidates for supporting distributed applications in dynamic and ubiquitous environments because they support decoupled and asynchronous many-to-many information dissemination. Event systems are widely used, because asynchronous messaging provides a flexible alternative to RPC (Remote Procedure Call). They are typically implemented using an overlay network of routers. A content-based router forwards event messages based on filters that are installed by subscribers and other routers. The filters are organized into a routing table in order to forward incoming events to proper subscribers and neighbouring routers. This thesis addresses the optimization of content-based routing tables organized using the covering relation and presents novel data structures and configurations for improving local and distributed operation. Data structures are needed for organizing filters into a routing table that supports efficient matching and runtime operation. We present novel results on dynamic filter merging and the integration of filter merging with content-based routing tables. In addition, the thesis examines the cost of client mobility using different protocols and routing topologies. We also present a new matching technique called temporal subspace matching. The technique combines two new features. The first feature, temporal operation, supports notifications, or content profiles, that persist in time. The second feature, subspace matching, allows more expressive semantics, because notifications may contain intervals and be defined as subspaces of the content space. We also present an application of temporal subspace matching pertaining to metadata-based continuous collection and object tracking.