22 resultados para Containing Peptide


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of the present study was to evaluate the effects of Lactobacillus helveticus fermented milk (peptide milk) containing the casein-derived tripeptides Isoleucyl-prolyl-proline (Ile-Pro-Pro) and Valyl-prolyl-proline (Val-Pro-Pro) on blood pressure and vascular function in hypertensive subjects. The peptide milk lowered systolic and diastolic blood pressure in long-term use in hypertensive subjects when blood pressure was measured by using 24-hour ambulatory blood pressure measurement (ABPM). The blood pressure lowering effect was seen with the dose of 50 mg of tripeptides, and a tendency for lowering blood pressure was also observed when the dose was 5 mg. No adverse effects compared to the placebo group were reported or detected in laboratory analysis. The effect of the peptide milk on arterial stiffness was shown using two different methods, the ambulatory arterial stiffness index (AASI) and pulse wave analysis (PWA). According to the AASI, arterial stiffness was significantly reduced in the peptide milk group compared to the baseline level, but the difference was not significant compared to the placebo group. PWA showed that the peptide milk reduced arterial stiffness significantly compared to the placebo group. Endothelium-independent relaxation (nitroglycerin) and endothelium-dependent relaxation (salbutamol) did not differ between the groups. The blood pressure lowering mechanisms of the tripeptides and the kinetics of Ile-Pro-Pro were investigated using spontaneously hypertensive rats (SHR) and Sprague-Dawley rats. Previous studies have suggested that the blood pressure lowering effect of the tripeptides Ile-Pro-Pro and Val-Pro-Pro is based on angiotensin-converting enzyme inhibition, but the present findings did not agree with these previous studies. It was shown in SHR that calcium, potassium and magnesium may also have an important role in attenuating the development of hypertension as part of the peptide milk effect. In addition, the present study suggests indirectly that improved endothelial nitric oxide release capacity is not the mechanism by which peptide milk mediates its favourable circulatory effects. The kinetics of Ile-Pro-Pro were studied using adult Sprague-Dawley rats. The results showed that orally administered Ile-Pro-Pro is absorbed at least partly intact from the gastrointestinal tract. Radiolabelled Ile-Pro-Pro was distributed in different tissues and considerable radioactivity levels were found in tissues related to the renin-angiotensin system (RAS), adrenals, aorta and kidneys. Ile-Pro-Pro does not bind to plasma proteins, and therefore it is possible that its blood pressure lowering effect is mediated by free Ile-Pro-Pro. In conclusion, consumption of the peptide milk lowers blood pressure and reduces arterial stiffness in hypertensive subjects. Ile-Pro-Pro can be absorbed partly intact from the gastrointestinal tract and might accumulate in tissues related to the RAS. The precise blood pressure lowering mechanism of peptide milk remains to be studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since the 1980 s, laminin-1 has been linked to regeneration of the central nervous system (CNS) and promotion of neuronal migration and axon guidance during CNS development. In this thesis, we clarify the role of γ1 laminin and its KDI tripeptide in development of human embryonic spinal cord, in regeneration of adult rat spinal cord injury (SCI), in kainic acid-induced neuronal death, and in the spinal cord tissue of amyotrophic lateral sclerosis (ALS). We demonstrated that γ1 laminin together with α1, β1, and β3 laminins localize at the floor plate region in human embryonic spinal cord. This localization of γ1 laminin is in spatial and temporal correlation with development of the spinal cord and indicates that γ1 laminin may participate in commissural axon guidance during the embryonic development of the human CNS. With in vitro studies using the Matrigel culture system, we demonstrated that the KDI tripeptide of γ1 laminin provides a chemotrophic guidance cue for neurites of the human embryonic dorsal spinal cord, verifying the functional ability of γ1 laminin to guide commissural axons. Results from our experimental SCI model demonstrate that the KDI tripeptide enhanced functional recovery and promoted neurite outgrowth across the mechanically injured area in the adult rat spinal cord. Furthermore, our findings indicate that the KDI tripeptide as a non-competitive inhibitor of the ionotropic glutamate receptors can provide when administered in adequate concentrations an effective method to protect neurons against glutamate-induced excitotoxic cell death. Human postmortem samples were used to study motor neuron disease, ALS (IV), and the study revealed that in human ALS spinal cord, γ1 laminin was selectively over-expressed by reactive astrocytes, and that this over-expression may correlate with disease severity. The multiple ways by which γ1 laminin and its KDI tripeptide provide neurotrophic protection and enhance neuronal viability suggest that the over-expression of γ1 laminin may be a glial attempt to provide protection for neurons against ALS pathology. The KDI tripeptide is effective therapeutically thus far in animal models only. However, because KDI containing γ1 laminin exists naturally in the human CNS, KDI therapies are unlikely to be toxic or allergenic. Results from our animal models are encouraging, with no toxic side-effects detected even at high concentrations, but the ultimate confirmation can be achieved only after clinical trials. More research is still needed until the KDI tripeptide is refined into a clinically applicable method to treat various neurological disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study aims to elucidate the modifications in the structure and functionality of the phospholipid matrix of biological membranes brought about by free radical-mediated oxidative damage of its molecular constituents. To this end, the surface properties of two oxidatively modified phospholipids bearing an aldehyde or carboxyl function at the end of truncated sn-2 acyl chain were studied using a Langmuir balance. The results obtained reveal both oxidized species to have a significant impact on the structural dynamics of phospholipid monolayers, as illustrated by the progressive changes in force-area isotherms with increasing mole fraction of the oxidized lipid component. Moreover, surface potential measurements revealed considerable modifications in the electric properties of oxidized phospholipid containing monolayers during film compression, suggesting a packing state-controlled reorientation of the intramolecular electric dipoles of the lipid headgroups and acyl chains. Based on the above findings, a model describing the conformational state of oxidized phospholipid molecules in biological membranes is proposed, involving the protrusion of the acyl chains bearing the polar functional groups out from the hydrocarbon phase to the surrounding aqueous medium. Oxidative modifications alter profoundly the physicochemical properties of unsaturated phospholipids and are therefore readily anticipated to have important implications for their interactions with membrane-associating molecules. Along these lines, the carboxyl group bearing lipid was observed to bind avidly the peripheral membrane protein cytochrome c. The binding was reversed following increase in ionic strength or addition of polyanionic ATP, thus suggesting it to be driven by electrostatic interactions between cationic residues of the protein and the deprotonated lipid carboxyl exposed to the aqueous phase. The presence of aldehyde function bearing oxidized phospholipid was observed to enhance the intercalation of four antimicrobial peptides into phospholipid monolayers and liposomal bilayers. Partitioning of the peptides to monolayers was markedly attenuated by the aldehyde scavenger methoxyamine, revealing it to be mediated by the carbonyl moiety possibly through efficient hydrogen bonding or, alternatively, formation of covalent adduct in form of a Schiff base between the lipid aldehydes and primary amine groups of the peptide molecules. Lastly, both oxidized phospholipid species were observed to bind with high affinity three small membrane-partitioning therapeutic agents, viz. chlorpromazine, haloperidol, and doxorubicin. In conclusion, the results of studies conducted using biomimetic model systems support the notion that oxidative damage influences the molecular architecture as well as the bulk physicochemical properties of phospholipid membranes. Further, common polar functional groups carried by phospholipids subjected to oxidation were observed to act as molecular binding sites at the lipid-water interface. It is thus plausible that oxidized phospholipid species may elicit cellular level effects by modulating integration of various membrane-embedded and surface-associated proteins and peptides, whose conformational state, oligomerization, and functionality is known to be controlled by highly specific lipid-protein interactions and proper physical state of the membrane environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increased consumption of low-fat milk products is inversely associated with the risk of hypertension. The beneficial effect of milk on blood pressure is attributed to high calcium and potassium content but also to specific peptide sequences, which are cleaved from milk protein during gastrointestinal digestion, fermentation of milk with proteolytic starter cultures or enzymatic hydrolysis. Milk products fermented with Lactobacillus helveticus contain casein-derived tripeptides isoleucine-proline-proline (Ile-Pro-Pro) and valine-proline-proline (Val-Pro-Pro), which have been shown to possess antihypertensive effects in humans and in experimental animals. The aim of the present series of studies was to investigate the effects of tripeptides Ile-Pro-Pro and Val-Pro-Pro or fermented milk products containing them on vascular function and blood pressure and to elucidate the mechanisms behind them by using different experimental models of hypertension. Another aim was to characterize the acute effects of tripeptides on blood pressure and arterial stiffness in mildly hypertensive humans. Ile-Pro-Pro and Val-Pro-Pro or fermented milk products containing them attenuated the development of hypertension in two experimental models of hypertension, spontaneously hypertensive rat (SHR) and type 2 diabetic Goto-Kakizaki (GK) rat fed with high-salt diet. Significant differences in systolic blood pressure (SBP) were seen after 8 weeks treatment with tripeptide-containing products compared to control product. Plant sterols did not enhance this effect. Two differently produced tripeptide powders produced a similar attenuating effect on SBP in SHR. In mildly hypertensive subjects, a single administration of tripeptide- and plant sterol-containing fermented milk product decreased both SBP and diastolic blood pressure (DBP) over a period of 8 hours. Protective effect of tripeptides Ile-Pro-Pro and Val-Pro-Pro and fermented milk products containing them on vascular function was demonstrated in in vitro studies and long-term experimental studies. The effect was shown to be endothelium-dependent and possibly involving endothelium-derived hyperpolarizing factor (EDHF). In the clinical study, single administration of tripeptide-containing fermented milk product did not affect measures of arterial stiffness. Long-term treatment with fermented milk product containing Ile-Pro-Pro and Val-Pro-Pro inhibited angiotensin-converting enzyme (ACE) and decreased aldosterone levels thus showing beneficial effects on the renin-angiotensin system (RAS) in SHR and GK. No changes in the components of RAS were observed by the single administration of the same product in mildly hypertensive subjects. Increased levels of cGMP, NOx and citrulline suggest increased nitric oxide (NO) production by the tripeptides. Taken together, Ile-Pro-Pro and Val-Pro-Pro -containing products attenuate the development of hypertension after long-term treatment in experimental models of hypertension and possess an acute antihypertensive effect in mildly hypertensive subjects. In addition, these tripeptides show endothelium-mediated beneficial effects on vascular function. Attenuation of blood pressure increase by the tripeptides in experimental animals involves RAS, but its role in the antihypertensive effect in humans remains to be elucidated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The importance of intermolecular interactions to chemistry, physics, and biology is difficult to overestimate. Without intermolecular forces, condensed phase matter could not form. The simplest way to categorize different types of intermolecular interactions is to describe them using van der Waals and hydrogen bonded (H-bonded) interactions. In the H-bond, the intermolecular interaction appears between a positively charged hydrogen atom and electronegative fragments and it originates from strong electrostatic interactions. H-bonding is important when considering the properties of condensed phase water and in many biological systems including the structure of DNA and proteins. Vibrational spectroscopy is a useful tool for studying complexes and the solvation of molecules. Vibrational frequency shift has been used to characterize complex formation. In an H-bonded system A∙∙∙H-X (A and X are acceptor and donor species, respectively), the vibrational frequency of the H-X stretching vibration usually decreases from its value in free H-X (red-shift). This frequency shift has been used as evidence for H-bond formation and the magnitude of the shift has been used as an indicator of the H-bonding strength. In contrast to this normal behavior are the blue-shifting H-bonds, in which the H-X vibrational frequency increases upon complex formation. In the last decade, there has been active discussion regarding these blue-shifting H-bonds. Noble-gases have been considered inert due to their limited reactivity with other elements. In the early 1930 s, Pauling predicted the stable noble-gas compounds XeF6 and KrF6. It was not until three decades later Neil Bartlett synthesized the first noble-gas compound, XePtF6, in 1962. A renaissance of noble-gas chemistry began in 1995 with the discovery of noble-gas hydride molecules at the University of Helsinki. The first hydrides were HXeCl, HXeBr, HXeI, HKrCl, and HXeH. These molecules have the general formula of HNgY, where H is a hydrogen atom, Ng is a noble-gas atom (Ar, Kr, or Xe), and Y is an electronegative fragment. At present, this class of molecules comprises 23 members including both inorganic and organic compounds. The first and only argon-containing neutral chemical compound HArF was synthesized in 2000 and its properties have since been investigated in a number of studies. A helium-containing chemical compound, HHeF, was predicted computationally, but its lifetime has been predicted to be severely limited by hydrogen tunneling. Helium and neon are the only elements in the periodic table that do not form neutral, ground state molecules. A noble-gas matrix is a useful medium in which to study unstable and reactive species including ions. A solvated proton forms a centrosymmetric NgHNg+ (Ng = Ar, Kr, and Xe) structure in a noble-gas matrix and this is probably the simplest example of a solvated proton. Interestingly, the hypothetical NeHNe+ cation is isoelectronic with the water-solvated proton H5O2+ (Zundel-ion). In addition to the NgHNg+ cations, the isoelectronic YHY- (Y = halogen atom or pseudohalogen fragment) anions have been studied with the matrix-isolation technique. These species have been known to exist in alkali metal salts (YHY)-M+ (M = alkali metal e.g. K or Na) for more than 80 years. Hydrated HF forms the FHF- structure in aqueous solutions, and these ions participate in several important chemical processes. In this thesis, studies of the intermolecular interactions of HNgY molecules and centrosymmetric ions with various species are presented. The HNgY complexes show unusual spectral features, e.g. large blue-shifts of the H-Ng stretching vibration upon complexation. It is suggested that the blue-shift is a normal effect for these molecules, and that originates from the enhanced (HNg)+Y- ion-pair character upon complexation. It is also found that the HNgY molecules are energetically stabilized in the complexed form, and this effect is computationally demonstrated for the HHeF molecule. The NgHNg+ and YHY- ions also show blue-shifts in their asymmetric stretching vibration upon complexation with nitrogen. Additionally, the matrix site structure and hindered rotation (libration) of the HNgY molecules were studied. The librational motion is a much-discussed solid state phenomenon, and the HNgY molecules embedded in noble-gas matrices are good model systems to study this effect. The formation mechanisms of the HNgY molecules and the decay mechanism of NgHNg+ cations are discussed. A new electron tunneling model for the decay of NgHNg+ absorptions in noble-gas matrices is proposed. Studies of the NgHNg+∙∙∙N2 complexes support this electron tunneling mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The correct localization of proteins is essential for cell viability. In order to achieve correct protein localization to cellular membranes, conserved membrane targeting and translocation mechanisms have evolved. The focus of this work was membrane targeting and translocation of a group of proteins that circumvent the known targeting and translocation mechanisms, the C-tail anchored protein family. Members of this protein family carry out a wide range of functions, from protein translocation and recognition events preceding membrane fusion, to the regulation of programmed cell death. In this work, the mechanisms of membrane insertion and targeting of two C-tail anchored proteins were studied utilizing in vivo and in vitro methods, in yeast and mammalian cell systems. The proteins studied were cytochrome b(5), a well characterized C-tail anchored model protein, and N-Bak, a novel member of the Bcl-2 family of regulators of programmed cell death. Membrane insertion of cytochrome b(5) into the endoplasmic reticulum membrane was found to occur independently of the known protein conducting channels, through which signal peptide-containing polypeptides are translocated. In fact, the membrane insertion process was independent of any protein components and did not require energy. Instead membrane insertion was observed to be dependent on the lipid composition of the membrane. The targeting of N-Bak was found to depend on the cellular context. Either the mitochondrial or endoplasmic reticulum membranes were targeted, which resulted in morphological changes of the target membranes. These findings indicate the existence of a novel membrane insertion mechanism for C-tail anchored proteins, in which membrane integration of the transmembrane domain, and the translocation of C-terminal fragments, appears to be spontaneous. This mode of membrane insertion is regulated by the target membrane fluidity, which depends on the lipid composition of the bilayer, and the hydrophobicity of the transmembrane domain of the C-tail anchored protein, as well as by the availability of the C-tail for membrane integration. Together these mechanisms enable the cell to achieve spatial and temporal regulation of sub-cellular localization of C-tail anchored proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study analyses the traffic of Hsp150 fusion proteins through the endoplasmic reticulum (ER) of yeast cells, from their post-translational translocation and folding to their exit from the ER via a selective COPI-independent pathway. The reporter proteins used in the present work are: Hsp150p, an O-glycosylated natural secretory protein of Saccharomyces cerevisiae, as well as fusion proteins consisting of a fragment of Hsp150 that facilitates in the yeast ER proper folding of heterologous proteins fused to it. It is thought that newly synthesized polypeptides are kept in an unfolded form by cytosolic chaperones to facilitate the post-translational translocation across the ER membrane. However, beta-lactamase, fused to the Hsp150 fragment, folds in the cytosol into bioactive conformation. Irreversible binding of benzylpenicillin locked beta-lactamase into a globular conformation, and prevented the translocation of the fusion protein. This indicates that under normal conditions the beta-lactamase portion unfolds for translocation. Cytosolic machinery must be responsible for the unfolding. The unfolding is a prerequisite for translocation through the Sec61 channel into the lumen of the ER, where the polypeptide is again folded into a bioactive and secretion-competent conformation. Lhs1p is a member of the Hsp70 family, which functions in the conformational repair of misfolded proteins in the yeast ER. It contains Hsp70 motifs, thus it has been thought to be an ATPase, like other Hsp70 members. In order to understand its activity, authentic Lhs1p and its recombinant forms expressed in E. coli, were purified. However, no ATPase activity of Lhs1p could be detected. Nor could physical interaction between Lhs1p and activators of the ER Hsp70 chaperone Kar2p, such as the J-domain proteins Sec63p, Scj1p, and Jem1p and the nucleotide exchange factor Sil1p, be demonstrated. The domain structure of Lhs1p was modelled, and found to consist of an ATPase-like domain, a domain resembling the peptide-binding domain (PBD) of Hsp70 proteins, and a C-terminal extension. Crosslinking experiments showed that Lhs1p and Kar2p interact. The interacting domains were the C-terminal extension of Lhs1p and the ATPase domain of Kar2p, and this interaction was independent of ATPase activity of Kar2p. A model is presented where the C-terminal part of Lhs1p forms a Bag-like 3 helices bundle that might serve in the nucleotide exchange function for Kar2p in translocation and folding of secretory proteins in the ER. Exit of secretory proteins in COPII-coated vesicles is believed to be dependent of retrograde transport from the Golgi to the ER in COPI-coated vesicles. It is thought that receptors escaping to the Golgi must be recycled back to the ER exit sites to recruit cargo proteins. We found that Hsp150 leaves the ER even in the absence of functional COPI-traffic from the Golgi to the ER. Thus, an alternative, COPI-independent ER exit pathway must exists, and Hsp150 is recruited to this route. The region containing the signature guiding Hsp150 to this alternative pathway was mapped.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Viruses are biological entities able to replicate only within their host cells. Accordingly, entry into the host is a crucial step of the virus life-cycle. The focus of this study was the entry of bacterial membrane-containing viruses into their host cells. In order to reach the site of replication, the cytoplasm of the host, bacterial viruses have to traverse the host cell envelope, which consists of several distinct layers. Lipid membrane is a common feature among animal viruses but not so frequently observed in bacteriophages. There are three families of icosahedral bacteriophages that contain lipid membranes. These viruses belong to families Cystoviridae, Tectiviridae, and Corticoviridae. During the course of this study the entry mechanisms of phages representing the three viral families were investigated. We employed a range of microbiological, biochemical, molecular biology and microscopy techniques that allowed us to dissect phage entry into discrete steps: receptor binding, penetration through the outer membrane, crossing the peptidoglycan layer and interaction with the cytoplasmic membrane. We determined that bacteriophages belonging to the Cystoviridae, Tectiviridae, and Corticoviridae viral families use completely different strategies to penetrate into their host cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis three icosahedral lipid-containing double-stranded (ds) deoxyribonucleic acid (DNA) bacteriophages have been studied: PRD1, Bam35 and P23-77. The work focuses on the entry, exit and structure of the viruses. PRD1 is the type member of the Tectiviridae family, infecting a variety of Gram-negative bacteria. The PRD1 receptor binding complex, consisting of the penton protein P31, the spike protein P5 and the receptor binding protein P2 recognizes a specific receptor on the host surface. In this study we found that the transmembrane protein P16 has an important stabilization function as the fourth member of the receptor binding complex and protein P16 may have a role in the formation of a tubular membrane structure, which is needed in the ejection of the genome into the cell. Phage Bam35 (Tectiviridae), which infects Gram-positive hosts, has been earlier found to resemble PRD1 in morphology and genome organization The uncharacterized early and late events in the Bam35 life cycle were studied by electrochemical methods. Physiological changes in the beginning of the infection were found to be similar in both lysogenic and nonlysogenic cell lines, Bam35 inducing a temporal decrease of membrane voltage and K+ efflux. At the end of the infection cycle physiological changes were observed only in the nonlysogenic cell line. The strong K+ efflux 40 min after infection and the induced premature cell lysis propose that Bam35 has a similar holin-endolysin lysis system to that of PRD1. Thermophilic icosahedral dsDNA Thermus phages P23-65H, P23-72 and P23-77 have been proposed to belong to the Tectiviridae family. In this study these phages were compared to each other. Analysis of structural protein patterns and stability revealed these phages to be very similar but not identical. The most stable of the studied viruses, P23-77, was further analyzed in more detail. Cryo-electron microscopy and three-dimensional image reconstruction was used to determine the structure of virus to 14 Å resolution. Results of thin layer chromatography for neutral lipids together with analysis of the three dimensional reconstruction of P23-77 virus particle revealed the presence of an internal lipid membrane. The overall capsid architecture of P23-77 is similar to PRD1 and Bam35, but most closely it resembles the structure of the capsid of archaeal virus SH1. This complicates the classification of dsDNA, internal lipid-containing icosahedral viruses.