18 resultados para Anthropometric Compliance Tools.
Resumo:
Clinical trials have shown that weight reduction with lifestyles can delay or prevent diabetes and reduce blood pressure. An appropriate definition of obesity using anthropometric measures is useful in predicting diabetes and hypertension at the population level. However, there is debate on which of the measures of obesity is best or most strongly associated with diabetes and hypertension and on what are the optimal cut-off values for body mass index (BMI) and waist circumference (WC) in this regard. The aims of the study were 1) to compare the strength of the association for undiagnosed or newly diagnosed diabetes (or hypertension) with anthropometric measures of obesity in people of Asian origin, 2) to detect ethnic differences in the association of undiagnosed diabetes with obesity, 3) to identify ethnic- and sex-specific change point values of BMI and WC for changes in the prevalence of diabetes and 4) to evaluate the ethnic-specific WC cutoff values proposed by the International Diabetes Federation (IDF) in 2005 for central obesity. The study population comprised 28 435 men and 35 198 women, ≥ 25 years of age, from 39 cohorts participating in the DECODA and DECODE studies, including 5 Asian Indian (n = 13 537), 3 Mauritian Indian (n = 4505) and Mauritian Creole (n = 1075), 8 Chinese (n =10 801), 1 Filipino (n = 3841), 7 Japanese (n = 7934), 1 Mongolian (n = 1991), and 14 European (n = 20 979) studies. The prevalence of diabetes, hypertension and central obesity was estimated, using descriptive statistics, and the differences were determined with the χ2 test. The odds ratios (ORs) or coefficients (from the logistic model) and hazard ratios (HRs, from the Cox model to interval censored data) for BMI, WC, waist-to-hip ratio (WHR), and waist-to-stature ratio (WSR) were estimated for diabetes and hypertension. The differences between BMI and WC, WHR or WSR were compared, applying paired homogeneity tests (Wald statistics with 1 df). Hierarchical three-level Bayesian change point analysis, adjusting for age, was applied to identify the most likely cut-off/change point values for BMI and WC in association with previously undiagnosed diabetes. The ORs for diabetes in men (women) with BMI, WC, WHR and WSR were 1.52 (1.59), 1.54 (1.70), 1.53 (1.50) and 1.62 (1.70), respectively and the corresponding ORs for hypertension were 1.68 (1.55), 1.66 (1.51), 1.45 (1.28) and 1.63 (1.50). For diabetes the OR for BMI did not differ from that for WC or WHR, but was lower than that for WSR (p = 0.001) in men while in women the ORs were higher for WC and WSR than for BMI (both p < 0.05). Hypertension was more strongly associated with BMI than with WHR in men (p < 0.001) and most strongly with BMI than with WHR (p < 0.001), WSR (p < 0.01) and WC (p < 0.05) in women. The HRs for incidence of diabetes and hypertension did not differ between BMI and the other three central obesity measures in Mauritian Indians and Mauritian Creoles during follow-ups of 5, 6 and 11 years. The prevalence of diabetes was highest in Asian Indians, lowest in Europeans and intermediate in others, given the same BMI or WC category. The coefficients for diabetes in BMI (kg/m2) were (men/women): 0.34/0.28, 0.41/0.43, 0.42/0.61, 0.36/0.59 and 0.33/0.49 for Asian Indian, Chinese, Japanese, Mauritian Indian and European (overall homogeneity test: p > 0.05 in men and p < 0.001 in women). Similar results were obtained in WC (cm). Asian Indian women had lower coefficients than women of other ethnicities. The change points for BMI were 29.5, 25.6, 24.0, 24.0 and 21.5 in men and 29.4, 25.2, 24.9, 25.3 and 22.5 (kg/m2) in women of European, Chinese, Mauritian Indian, Japanese, and Asian Indian descent. The change points for WC were 100, 85, 79 and 82 cm in men and 91, 82, 82 and 76 cm in women of European, Chinese, Mauritian Indian, and Asian Indian. The prevalence of central obesity using the 2005 IDF definition was higher in Japanese men but lower in Japanese women than in their Asian counterparts. The prevalence of central obesity was 52 times higher in Japanese men but 0.8 times lower in Japanese women compared to the National Cholesterol Education Programme definition. The findings suggest that both BMI and WC predicted diabetes and hypertension equally well in all ethnic groups. At the same BMI or WC level, the prevalence of diabetes was highest in Asian Indians, lowest in Europeans and intermediate in others. Ethnic- and sex-specific change points of BMI and WC should be considered in setting diagnostic criteria for obesity to detect undiagnosed or newly diagnosed diabetes.
Resumo:
This thesis studies human gene expression space using high throughput gene expression data from DNA microarrays. In molecular biology, high throughput techniques allow numerical measurements of expression of tens of thousands of genes simultaneously. In a single study, this data is traditionally obtained from a limited number of sample types with a small number of replicates. For organism-wide analysis, this data has been largely unavailable and the global structure of human transcriptome has remained unknown. This thesis introduces a human transcriptome map of different biological entities and analysis of its general structure. The map is constructed from gene expression data from the two largest public microarray data repositories, GEO and ArrayExpress. The creation of this map contributed to the development of ArrayExpress by identifying and retrofitting the previously unusable and missing data and by improving the access to its data. It also contributed to creation of several new tools for microarray data manipulation and establishment of data exchange between GEO and ArrayExpress. The data integration for the global map required creation of a new large ontology of human cell types, disease states, organism parts and cell lines. The ontology was used in a new text mining and decision tree based method for automatic conversion of human readable free text microarray data annotations into categorised format. The data comparability and minimisation of the systematic measurement errors that are characteristic to each lab- oratory in this large cross-laboratories integrated dataset, was ensured by computation of a range of microarray data quality metrics and exclusion of incomparable data. The structure of a global map of human gene expression was then explored by principal component analysis and hierarchical clustering using heuristics and help from another purpose built sample ontology. A preface and motivation to the construction and analysis of a global map of human gene expression is given by analysis of two microarray datasets of human malignant melanoma. The analysis of these sets incorporate indirect comparison of statistical methods for finding differentially expressed genes and point to the need to study gene expression on a global level.
Resumo:
Ubiquitous computing is about making computers and computerized artefacts a pervasive part of our everyday lifes, bringing more and more activities into the realm of information. The computationalization, informationalization of everyday activities increases not only our reach, efficiency and capabilities but also the amount and kinds of data gathered about us and our activities. In this thesis, I explore how information systems can be constructed so that they handle this personal data in a reasonable manner. The thesis provides two kinds of results: on one hand, tools and methods for both the construction as well as the evaluation of ubiquitous and mobile systems---on the other hand an evaluation of the privacy aspects of a ubiquitous social awareness system. The work emphasises real-world experiments as the most important way to study privacy. Additionally, the state of current information systems as regards data protection is studied. The tools and methods in this thesis consist of three distinct contributions. An algorithm for locationing in cellular networks is proposed that does not require the location information to be revealed beyond the user's terminal. A prototyping platform for the creation of context-aware ubiquitous applications called ContextPhone is described and released as open source. Finally, a set of methodological findings for the use of smartphones in social scientific field research is reported. A central contribution of this thesis are the pragmatic tools that allow other researchers to carry out experiments. The evaluation of the ubiquitous social awareness application ContextContacts covers both the usage of the system in general as well as an analysis of privacy implications. The usage of the system is analyzed in the light of how users make inferences of others based on real-time contextual cues mediated by the system, based on several long-term field studies. The analysis of privacy implications draws together the social psychological theory of self-presentation and research in privacy for ubiquitous computing, deriving a set of design guidelines for such systems. The main findings from these studies can be summarized as follows: The fact that ubiquitous computing systems gather more data about users can be used to not only study the use of such systems in an effort to create better systems but in general to study phenomena previously unstudied, such as the dynamic change of social networks. Systems that let people create new ways of presenting themselves to others can be fun for the users---but the self-presentation requires several thoughtful design decisions that allow the manipulation of the image mediated by the system. Finally, the growing amount of computational resources available to the users can be used to allow them to use the data themselves, rather than just being passive subjects of data gathering.
Resumo:
Bioremediation, which is the exploitation of the intrinsic ability of environmental microbes to degrade and remove harmful compounds from nature, is considered to be an environmentally sustainable and cost-effective means for environmental clean-up. However, a comprehensive understanding of the biodegradation potential of microbial communities and their response to decontamination measures is required for the effective management of bioremediation processes. In this thesis, the potential to use hydrocarbon-degradative genes as indicators of aerobic hydrocarbon biodegradation was investigated. Small-scale functional gene macro- and microarrays targeting aliphatic, monoaromatic and low molecular weight polyaromatic hydrocarbon biodegradation were developed in order to simultaneously monitor the biodegradation of mixtures of hydrocarbons. The validity of the array analysis in monitoring hydrocarbon biodegradation was evaluated in microcosm studies and field-scale bioremediation processes by comparing the hybridization signal intensities to hydrocarbon mineralization, real-time polymerase chain reaction (PCR), dot blot hybridization and both chemical and microbiological monitoring data. The results obtained by real-time PCR, dot blot hybridization and gene array analysis were in good agreement with hydrocarbon biodegradation in laboratory-scale microcosms. Mineralization of several hydrocarbons could be monitored simultaneously using gene array analysis. In the field-scale bioremediation processes, the detection and enumeration of hydrocarbon-degradative genes provided important additional information for process optimization and design. In creosote-contaminated groundwater, gene array analysis demonstrated that the aerobic biodegradation potential that was present at the site, but restrained under the oxygen-limited conditions, could be successfully stimulated with aeration and nutrient infiltration. During ex situ bioremediation of diesel oil- and lubrication oil-contaminated soil, the functional gene array analysis revealed inefficient hydrocarbon biodegradation, caused by poor aeration during composting. The functional gene array specifically detected upper and lower biodegradation pathways required for complete mineralization of hydrocarbons. Bacteria representing 1 % of the microbial community could be detected without prior PCR amplification. Molecular biological monitoring methods based on functional genes provide powerful tools for the development of more efficient remediation processes. The parallel detection of several functional genes using functional gene array analysis is an especially promising tool for monitoring the biodegradation of mixtures of hydrocarbons.
Resumo:
Mutation and recombination are the fundamental processes leading to genetic variation in natural populations. This variation forms the raw material for evolution through natural selection and drift. Therefore, studying mutation rates may reveal information about evolutionary histories as well as phylogenetic interrelationships of organisms. In this thesis two molecular tools, DNA barcoding and the molecular clock were examined. In the first part, the efficiency of mutations to delineate closely related species was tested and the implications for conservation practices were assessed. The second part investigated the proposition that a constant mutation rate exists within invertebrates, in form of a metabolic-rate dependent molecular clock, which can be applied to accurately date speciation events. DNA barcoding aspires to be an efficient technique to not only distinguish between species but also reveal population-level variation solely relying on mutations found on a short stretch of a single gene. In this thesis barcoding was applied to discriminate between Hylochares populations from Russian Karelia and new Hylochares findings from the greater Helsinki region in Finland. Although barcoding failed to delineate the two reproductively isolated groups, their distinct morphological features and differing life-history traits led to their classification as two closely related, although separate species. The lack of genetic differentiation appears to be due to a recent divergence event not yet reflected in the beetles molecular make-up. Thus, the Russian Hylochares was described as a new species. The Finnish species, previously considered as locally extinct, was recognized as endangered. Even if, due to their identical genetic make-up, the populations had been regarded as conspecific, conservation strategies based on prior knowledge from Russia would not have guaranteed the survival of the Finnish beetle. Therefore, new conservation actions based on detailed studies of the biology and life-history of the Finnish Hylochares were conducted to protect this endemic rarity in Finland. The idea behind the strict molecular clock is that mutation rates are constant over evolutionary time and may thus be used to infer species divergence dates. However, one of the most recent theories argues that a strict clock does not tick per unit of time but that it has a constant substitution rate per unit of mass-specific metabolic energy. Therefore, according to this hypothesis, molecular clocks have to be recalibrated taking body size and temperature into account. This thesis tested the temperature effect on mutation rates in equally sized invertebrates. For the first dataset (family Eucnemidae, Coleoptera) the phylogenetic interrelationships and evolutionary history of the genus Arrhipis had to be inferred before the influence of temperature on substitution rates could be studied. Further, a second, larger invertebrate dataset (family Syrphidae, Diptera) was employed. Several methodological approaches, a number of genes and multiple molecular clock models revealed that there was no consistent relationship between temperature and mutation rate for the taxa under study. Thus, the body size effect, observed in vertebrates but controversial for invertebrates, rather than temperature may be the underlying driving force behind the metabolic-rate dependent molecular clock. Therefore, the metabolic-rate dependent molecular clock does not hold for the here studied invertebrate groups. This thesis emphasizes that molecular techniques relying on mutation rates have to be applied with caution. Whereas they may work satisfactorily under certain conditions for specific taxa, they may fail for others. The molecular clock as well as DNA barcoding should incorporate all the information and data available to obtain comprehensive estimations of the existing biodiversity and its evolutionary history.
Resumo:
The analysis of lipid compositions from biological samples has become increasingly important. Lipids have a role in cardiovascular disease, metabolic syndrome and diabetes. They also participate in cellular processes such as signalling, inflammatory response, aging and apoptosis. Also, the mechanisms of regulation of cell membrane lipid compositions are poorly understood, partially because a lack of good analytical methods. Mass spectrometry has opened up new possibilities for lipid analysis due to its high resolving power, sensitivity and the possibility to do structural identification by fragment analysis. The introduction of Electrospray ionization (ESI) and the advances in instrumentation revolutionized the analysis of lipid compositions. ESI is a soft ionization method, i.e. it avoids unwanted fragmentation the lipids. Mass spectrometric analysis of lipid compositions is complicated by incomplete separation of the signals, the differences in the instrument response of different lipids and the large amount of data generated by the measurements. These factors necessitate the use of computer software for the analysis of the data. The topic of the thesis is the development of methods for mass spectrometric analysis of lipids. The work includes both computational and experimental aspects of lipid analysis. The first article explores the practical aspects of quantitative mass spectrometric analysis of complex lipid samples and describes how the properties of phospholipids and their concentration affect the response of the mass spectrometer. The second article describes a new algorithm for computing the theoretical mass spectrometric peak distribution, given the elemental isotope composition and the molecular formula of a compound. The third article introduces programs aimed specifically for the analysis of complex lipid samples and discusses different computational methods for separating the overlapping mass spectrometric peaks of closely related lipids. The fourth article applies the methods developed by simultaneously measuring the progress curve of enzymatic hydrolysis for a large number of phospholipids, which are used to determine the substrate specificity of various A-type phospholipases. The data provides evidence that the substrate efflux from bilayer is the key determining factor for the rate of hydrolysis.
Resumo:
Gene mapping is a systematic search for genes that affect observable characteristics of an organism. In this thesis we offer computational tools to improve the efficiency of (disease) gene-mapping efforts. In the first part of the thesis we propose an efficient simulation procedure for generating realistic genetical data from isolated populations. Simulated data is useful for evaluating hypothesised gene-mapping study designs and computational analysis tools. As an example of such evaluation, we demonstrate how a population-based study design can be a powerful alternative to traditional family-based designs in association-based gene-mapping projects. In the second part of the thesis we consider a prioritisation of a (typically large) set of putative disease-associated genes acquired from an initial gene-mapping analysis. Prioritisation is necessary to be able to focus on the most promising candidates. We show how to harness the current biomedical knowledge for the prioritisation task by integrating various publicly available biological databases into a weighted biological graph. We then demonstrate how to find and evaluate connections between entities, such as genes and diseases, from this unified schema by graph mining techniques. Finally, in the last part of the thesis, we define the concept of reliable subgraph and the corresponding subgraph extraction problem. Reliable subgraphs concisely describe strong and independent connections between two given vertices in a random graph, and hence they are especially useful for visualising such connections. We propose novel algorithms for extracting reliable subgraphs from large random graphs. The efficiency and scalability of the proposed graph mining methods are backed by extensive experiments on real data. While our application focus is in genetics, the concepts and algorithms can be applied to other domains as well. We demonstrate this generality by considering coauthor graphs in addition to biological graphs in the experiments.