2 resultados para tracking of explosives
em Glasgow Theses Service
Resumo:
Vertebrate genomes are organised into a variety of nuclear environments and chromatin states that have profound effects on the regulation of gene transcription. This variation presents a major challenge to the expression of transgenes for experimental research, genetic therapies and the production of biopharmaceuticals. The majority of transgenes succumb to transcriptional silencing by their chromosomal environment when they are randomly integrated into the genome, a phenomenon known as chromosomal position effect (CPE). It is not always feasible to target transgene integration to transcriptionally permissive “safe harbour” loci that favour transgene expression, so there remains an unmet need to identify gene regulatory elements that can be added to transgenes which protect them against CPE. Dominant regulatory elements (DREs) with chromatin barrier (or boundary) activity have been shown to protect transgenes from CPE. The HS4 element from the chicken beta-globin locus and the A2UCOE element from a human housekeeping gene locus have been shown to function as DRE barriers in a wide variety of cell types and species. Despite rapid advances in the profiling of transcription factor binding, chromatin states and chromosomal looping interactions, progress towards functionally validating the many candidate barrier elements in vertebrates has been very slow. This is largely due to the lack of a tractable and efficient assay for chromatin barrier activity. In this study, I have developed the RGBarrier assay system to test the chromatin barrier activity of candidate DREs at pre-defined isogenic loci in human cells. The RGBarrier assay consists in a Flp-based RMCE reaction for the integration of an expression construct, carrying candidate DREs, in a pre-characterised chromosomal location. The RGBarrier system involves the tracking of red, green and blue fluorescent proteins by flow cytometry to monitor on-target versus off-target integration and transgene expression. The analysis of the reporter (GFP) expression for several weeks gives a measure of the protective ability of each candidate elements from chromosomal silencing. This assay can be scaled up to test tens of new putative barrier elements in the same chromosomal context in parallel. The defined chromosomal contexts of the RGBarrier assays will allow for detailed mechanistic studies of chromosomal silencing and DRE barrier element action. Understanding these mechanisms will be of paramount importance for the design of specific solutions for overcoming chromosomal silencing in specific transgenic applications.
Resumo:
Fluvial sediment transport is controlled by hydraulics, sediment properties and arrangement, and flow history across a range of time scales. This physical complexity has led to ambiguous definition of the reference frame (Lagrangian or Eulerian) in which sediment transport is analysed. A general Eulerian-Lagrangian approach accounts for inertial characteristics of particles in a Lagrangian (particle fixed) frame, and for the hydrodynamics in an independent Eulerian frame. The necessary Eulerian-Lagrangian transformations are simplified under the assumption of an ideal Inertial Measurement Unit (IMU), rigidly attached at the centre of the mass of a sediment particle. Real, commercially available IMU sensors can provide high frequency data on accelerations and angular velocities (hence forces and energy) experienced by grains during entrainment and motion, if adequately customized. IMUs are subjected to significant error accu- mulation but they can be used for statistical parametrisation of an Eulerian-Lagrangian model, for coarse sediment particles and over the temporal scale of individual entrainment events. In this thesis an Eulerian-Lagrangian model is introduced and evaluated experimentally. Absolute inertial accelerations were recorded at a 4 Hz frequency from a spherical instrumented particle (111 mm diameter and 2383 kg/m3 density) in a series of entrainment threshold experiments on a fixed idealised bed. The grain-top inertial acceleration entrainment threshold was approximated at 44 and 51 mg for slopes 0.026 and 0.037 respectively. The saddle inertial acceleration entrainment threshold was at 32 and 25 mg for slopes 0.044 and 0.057 respectively. For the evaluation of the complete Eulerian-Lagrangian model two prototype sensors are presented: an idealised (spherical) with a diameter of 90 mm and an ellipsoidal with axes 100, 70 and 30 mm. Both are instrumented with a complete IMU, capable of sampling 3D inertial accelerations and 3D angular velocities at 50 Hz. After signal analysis, the results can be used to parametrize sediment movement but they do not contain positional information. The two sensors (spherical and ellipsoidal) were tested in a series of entrainment experiments, similar to the evaluation of the 111 mm prototype, for a slope of 0.02. The spherical sensor entrained at discharges of 24.8 ± 1.8 l/s while the same threshold for the ellipsoidal sensor was 45.2 ± 2.2 l/s. Kinetic energy calculations were used to quantify the particle-bed energy exchange under fluvial (discharge at 30 l/s) and non-fluvial conditions. All the experiments suggest that the effect of the inertial characteristics of coarse sediments on their motion is comparable to the effect hydrodynamic forces. The coupling of IMU sensors with advanced telemetric systems can lead to the tracking of Lagrangian particle trajectories, at a frequency and accuracy that will permit the testing of diffusion/dispersion models across the range of particle diameters.