2 resultados para subcutaneous drug administration

em Glasgow Theses Service


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The phosphodiesterase 4 (PDE4) family are cAMP specific phosphodiesterases that play an important role in the inflammatory response and is the major PDE type found in inflammatory cells. A significant number of PDE4 specific inhibitors have been developed and are currently being investigated for use as therapeutic agents. Apremilast, a small molecule inhibitor of PDE 4 is in development for chronic inflammatory disorders and has shown promise for the treatment of psoriasis, psoriatic arthritis as well as other inflammatory diseases. It has been found to be safe and well tolerated in humans and in March 2014 it was approved by the US food and drug administration for the treatment of adult patients with active psoriatic arthritis. The only other PDE4 inhibitor on the market is Roflumilast and it is used for treatment of respiratory disease. Roflumilast is approved in the EU for the treatment of COPD and was recently approved in the US for treatment to reduce the risk of COPD exacerbations. Roflumilast is also a selective PDE4 inhibitor, administered as an oral tablet once daily, and is thought to act by increasing cAMP within lung cells. As both (Apremilast and Roflumilast) compounds selectively inhibit PDE4 but are targeted at different diseases, there is a need for a clear understanding of their mechanism of action (MOA). Differences and similarity of MOA should be defined for the purposes of labelling, for communication to the scientific community, physicians, and patients, and for an extension of utility to other diseases and therapeutic areas. In order to obtain a complete comparative picture of the MOA of both inhibitors, additional molecular and cellular biology studies are required to more fully elucidate the signalling mediators downstream of PDE4 inhibition which result in alterations in pro- and anti-inflammatory gene expression. My studies were conducted to directly compare Apremilast with Roflumilast, in order to substantiate the differences observed in the molecular and cellular effects of these compounds, and to search for other possible differentiating effects. Therefore the main aim of this thesis was to utilise cutting-edge biochemical techniques to discover whether Apremilast and Roflumilast work with different modes of action. In the first part of my thesis I used novel genetically encoded FRET based cAMP sensors targeted to different intracellular compartments, in order to monitor cAMP levels within specific microdomains of cells as a consequence of challenge with Apremilast and Roflumilast, which revealed that Apremilast and Roflumilast do regulate different pools of cAMP in cells. In the second part of my thesis I focussed on assessing whether Apremilast and Roflumilast cause differential effects on the PKA phosphorylation state of proteins in cells. I used various biochemical techniques (Western blotting, Substrate kinase arrays and Reverse Phase Protein array and found that Apremilast and Roflumilast do lead to differential PKA substrate phosphorylation. For example I found that Apremilast increases the phosphorylation of Ribosomal Protein S6 at Ser240/244 and Fyn Y530 in the S6 Ribosomal pathway of Rheumatoid Arthritis Synovial fibroblast and HEK293 cells, whereas Roflumilast does not. This data suggests that Apremilast has distinct biological effects from that of Roflumilast and could represent a new therapeutic role for Apremilast in other diseases. In the final part of my thesis, Phage display technology was employed in order to identify any novel binding motifs that associate with PDE4 and to identify sequences that were differentially regulated by the inhibitors in an attempt to find binding motifs that may exist in previously characterised signalling proteins. Petide array technology was then used to confirm binding of specific peptide sequences or motifs. Results showed that Apremilast and Roflumilast can either enhance or decrease the binding of PDE4A4 to specific peptide sequences or motifs that are found in a variety of proteins in the human proteome, most interestingly Ubiquitin-related proteins. The data from this chapter is preliminary but may be used in the discovery of novel binding partners for PDE4 or to provide a new role for PDE inhibition in disease. Therefore the work in this thesis provides a unique snapshot of the complexity of the cAMP signalling system and is the first to directly compare action of the two approved PDE4 inhibitors in a detailed way.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In 2009 and 2010, the major drug regulatory bodies, the European Medicines Agency and the Food and Drug Administration in the USA, issued requests for the generation of information relating to the absorption, distribution, metabolism, excretion, efficacy and safety of investigational drugs in pregnant women prior to approval. In the wake of thalidomide, research involving pregnant women other than for obstetric or gynaecologic purposes became rare, and studies of investigational drugs practically unknown. Consequently, none of the legislation applicable in the UK and few of the guidelines introduced in the last 40 years properly addresses the conduct of clinical trials of investigational drugs in this population. This thesis questions whether the legal protection for the foetus is adequate in clinical trials. The answer appears to be a qualified “no”. Arguments persist regarding the moral standing of the foetus, particularly regarding abortion. That will not be the intent of such trials, and a moral case is made for the conduct of clinical trials in this population by analogy with the neonate, and the pregnant woman’s autonomy. Legally, we already recognise the foetus has ‘interests’ which crystallise upon live birth, and that compensation is recoverable for harm inflicted in utero manifesting as congenital injury. The essence of research is quite different from medical practice, and the extent to which this is understood by trial participants is unclear. The approvals processes contain a number of inadequacies which have the potential to expose the foetus to harm and affect the consent of the pregnant woman. The recovery of compensation in the event of children born injured following clinical trials during pregnancy in many ways may be more complex than other personal injury cases.. The conclusions of this thesis are that the existence of a foetus does merit recognition by the law in this setting and that morally such studies are justifiable. However, the present legislation and approval processes potentially expose the foetus to avoidable risk and may not be appropriate to enable the recovery of compensation, thereby creating potential to deter future trial participants. A proposal is made regarding an approach to simplify the process for recovery of compensation, and thereby strengthen the approval and consent processes.