3 resultados para space laser communication

em Glasgow Theses Service


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The production and perception of music is a multimodal activity involving auditory, visual and conceptual processing, integrating these with prior knowledge and environmental experience. Musicians utilise expressive physical nuances to highlight salient features of the score. The question arises within the literature as to whether performers’ non-technical, non-sound-producing movements may be communicatively meaningful and convey important structural information to audience members and co-performers. In the light of previous performance research (Vines et al., 2006, Wanderley, 2002, Davidson, 1993), and considering findings within co-speech gestural research and auditory and audio-visual neuroscience, this thesis examines the nature of those movements not directly necessary for the production of sound, and their particular influence on audience perception. Within the current research 3D performance analysis is conducted using the Vicon 12- camera system and Nexus data-processing software. Performance gestures are identified as repeated patterns of motion relating to music structure, which not only express phrasing and structural hierarchy but are consistently and accurately interpreted as such by a perceiving audience. Gestural characteristics are analysed across performers and performance style using two Chopin preludes selected for their diverse yet comparable structures (Opus 28:7 and 6). Effects on perceptual judgements of presentation modes (visual-only, auditory-only, audiovisual, full- and point-light) and viewing conditions are explored. This thesis argues that while performance style is highly idiosyncratic, piano performers reliably generate structural gestures through repeated patterns of upper-body movement. The shapes and locations of phrasing motions are identified particular to the sample of performers investigated. Findings demonstrate that despite the personalised nature of the gestures, performers use increased velocity of movements to emphasise musical structure and that observers accurately and consistently locate phrasing junctures where these patterns and variation in motion magnitude, shape and velocity occur. By viewing performance motions in polar (spherical) rather than cartesian coordinate space it is possible to get mathematically closer to the movement generated by each of the nine performers, revealing distinct patterns of motion relating to phrasing structures, regardless of intended performance style. These patterns are highly individualised both to each performer and performed piece. Instantaneous velocity analysis indicates a right-directed bias of performance motion variation at salient structural features within individual performances. Perceptual analyses demonstrate that audience members are able to accurately and effectively detect phrasing structure from performance motion alone. This ability persists even for degraded point-light performances, where all extraneous environmental information has been removed. The relative contributions of audio, visual and audiovisual judgements demonstrate that the visual component of a performance does positively impact on the over- all accuracy of phrasing judgements, indicating that receivers are most effective in their recognition of structural segmentations when they can both see and hear a performance. Observers appear to make use of a rapid online judgement heuristics, adjusting response processes quickly to adapt and perform accurately across multiple modes of presentation and performance style. In line with existent theories within the literature, it is proposed that this processing ability may be related to cognitive and perceptual interpretation of syntax within gestural communication during social interaction and speech. Findings of this research may have future impact on performance pedagogy, computational analysis and performance research, as well as potentially influencing future investigations of the cognitive aspects of musical and gestural understanding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a professional and business-social context such as that of global hotel brands in the United Kingdom, intercultural communication, contacts and relationships are found at the heart of daily operations and of customer service. A large part of the clientele base of hotels in the United Kingdom is formed by individuals who belong to different cultural groups that travel in the country either for leisure or business. At the same time, the global workforce which is recruited in the hotel industry in the United Kingdom is a reality here to stay. Global travelling and labor work mobility are phenomena which have been generated by changes which occur on a socio-economic, cultural and political level due to the phenomenon of globalization. The hotel industry is therefore well acquainted with the essence of different cultures either to be accommodated within hotel premises, as in the case of external customers, or of diversity management where different cultures are recruited in the hotel industry, as in the case of internal customers. This thesis derives from research conducted on eight different global hotel brands in the United Kingdom in particular, with reference to three, four and five star categories. The research aimed to answer the question of how hotels are organized in order to address issues of intercultural communication during customer service and if intercultural barriers arise during the intercultural interaction of hotel staff and global customers. So as to understand how global hotel brands operate the research carried out focused in three main areas relating to each hotel: organizational culture, customer service–customer care and intercultural issues. The study utilized qualitative interviews with hotel management staff and non-management staff from different cultural backgrounds, public space observations between customers and staff during check-in and checkout in the reception area and during dining at the café-bar and restaurant. Thematic analysis was also applied to the official web page of each hotel and to job advertisements to enhance the findings from the interviews and the observations. For the process of analysis of the data interpretive (hermeneutic) phenomenology of Martin Heidegger has been applied. Generally, it was found that hotel staff quite often feel perplexed by how to deal with and how to overcome, for instance, language barriers and religious issues and how to interpret non verbal behaviors or matters on food culture relating to the intercultural aspect of customer service. In addition, it was interesting to find that attention to excellent customer service on the part of hotel staff is a top organizational value and customer care is a priority. Despite that, the participating hotel brands appear to have not yet, realized how intercultural barriers can affect the daily operation of the hotel, the job performance and the psychology of hotel staff. Employees indicated that they were keen to receive diversity training, provided by their organizations, so as to learn about different cultural needs and expand their intercultural skills. The notion of diversity training in global hotel brands is based on the sense that one of the multiple aims of diversity management as a practice and policy in the workplace of hotels is the better understanding of intercultural differences. Therefore global hotel brands can consider diversity training as a practice which will benefit their hotel staff and clientele base at the same time. This can have a distinctive organizational advantage for organizational affairs in the hotel industry, with potential to influence the effectiveness and performance of hotels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The current approach to data analysis for the Laser Interferometry Space Antenna (LISA) depends on the time delay interferometry observables (TDI) which have to be generated before any weak signal detection can be performed. These are linear combinations of the raw data with appropriate time shifts that lead to the cancellation of the laser frequency noises. This is possible because of the multiple occurrences of the same noises in the different raw data. Originally, these observables were manually generated starting with LISA as a simple stationary array and then adjusted to incorporate the antenna's motions. However, none of the observables survived the flexing of the arms in that they did not lead to cancellation with the same structure. The principal component approach is another way of handling these noises that was presented by Romano and Woan which simplified the data analysis by removing the need to create them before the analysis. This method also depends on the multiple occurrences of the same noises but, instead of using them for cancellation, it takes advantage of the correlations that they produce between the different readings. These correlations can be expressed in a noise (data) covariance matrix which occurs in the Bayesian likelihood function when the noises are assumed be Gaussian. Romano and Woan showed that performing an eigendecomposition of this matrix produced two distinct sets of eigenvalues that can be distinguished by the absence of laser frequency noise from one set. The transformation of the raw data using the corresponding eigenvectors also produced data that was free from the laser frequency noises. This result led to the idea that the principal components may actually be time delay interferometry observables since they produced the same outcome, that is, data that are free from laser frequency noise. The aims here were (i) to investigate the connection between the principal components and these observables, (ii) to prove that the data analysis using them is equivalent to that using the traditional observables and (ii) to determine how this method adapts to real LISA especially the flexing of the antenna. For testing the connection between the principal components and the TDI observables a 10x 10 covariance matrix containing integer values was used in order to obtain an algebraic solution for the eigendecomposition. The matrix was generated using fixed unequal arm lengths and stationary noises with equal variances for each noise type. Results confirm that all four Sagnac observables can be generated from the eigenvectors of the principal components. The observables obtained from this method however, are tied to the length of the data and are not general expressions like the traditional observables, for example, the Sagnac observables for two different time stamps were generated from different sets of eigenvectors. It was also possible to generate the frequency domain optimal AET observables from the principal components obtained from the power spectral density matrix. These results indicate that this method is another way of producing the observables therefore analysis using principal components should give the same results as that using the traditional observables. This was proven by fact that the same relative likelihoods (within 0.3%) were obtained from the Bayesian estimates of the signal amplitude of a simple sinusoidal gravitational wave using the principal components and the optimal AET observables. This method fails if the eigenvalues that are free from laser frequency noises are not generated. These are obtained from the covariance matrix and the properties of LISA that are required for its computation are the phase-locking, arm lengths and noise variances. Preliminary results of the effects of these properties on the principal components indicate that only the absence of phase-locking prevented their production. The flexing of the antenna results in time varying arm lengths which will appear in the covariance matrix and, from our toy model investigations, this did not prevent the occurrence of the principal components. The difficulty with flexing, and also non-stationary noises, is that the Toeplitz structure of the matrix will be destroyed which will affect any computation methods that take advantage of this structure. In terms of separating the two sets of data for the analysis, this was not necessary because the laser frequency noises are very large compared to the photodetector noises which resulted in a significant reduction in the data containing them after the matrix inversion. In the frequency domain the power spectral density matrices were block diagonals which simplified the computation of the eigenvalues by allowing them to be done separately for each block. The results in general showed a lack of principal components in the absence of phase-locking except for the zero bin. The major difference with the power spectral density matrix is that the time varying arm lengths and non-stationarity do not show up because of the summation in the Fourier transform.