5 resultados para six minute step test

em Glasgow Theses Service


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pulmonary hypertension (PH) is a rare but serious condition that causes progressive right ventricular (RV) failure and death. PH may be idiopathic, associated with underlying connective-tissue disease or hypoxic lung disease, and is also increasingly being observed in the setting of heart failure with preserved ejection fraction (HFpEF). The management of PH has been revolutionised by the recent development of new disease-targeted therapies which are beneficial in pulmonary arterial hypertension (PAH), but can be potentially harmful in PH due to left heart disease, so accurate diagnosis and classification of patients is essential. These PAH therapies improve exercise capacity and pulmonary haemodynamics, but their overall effect on the right ventricle remains unclear. Current practice in the UK is to assess treatment response with 6-minute walk test and NYHA functional class, neither of which truly reflects RV function. Cardiac magnetic resonance (CMR) imaging has been established as the gold standard for the evaluation of right ventricular structure and function, but it also allows a non-invasive and accurate study of the left heart. The aims of this thesis were to investigate the use of CMR in the diagnosis of PH, in the assessment of treatment response, and in predicting survival in idiopathic and connective-tissue disease associated PAH. In Chapter 3, a left atrial volume (LAV) threshold of 43 ml/m2 measured with CMR was able to distinguish idiopathic PAH from PH due to HFpEF (sensitivity 97%, specificity 100%). In Chapter 4, disease-targeted PAH therapy resulted in significant improvements in RV and left ventricular ejection fraction (p<0.001 and p=0.0007, respectively), RV stroke volume index (p<0.0001), and left ventricular end-diastolic volume index (p=0.0015). These corresponded to observed improvements in functional class and exercise capacity, although correlation coefficients between Δ 6MWD and Δ RVEF or Δ LVEDV were low. Finally, in Chapter 5, one-year and three-year survival was worse in CTD-PAH (75% and 53%) than in IPAH (83% and 74%), despite similar baseline clinical characteristics, lung function, pulmonary haemodynamics and treatment. Baseline right ventricular stroke volume index was an independent predictor of survival in both conditions. The presence of LV systolic dysfunction was of prognostic significance in CTD-PAH but not IPAH, and a higher LAV was observed in CTD-PAH suggesting a potential contribution from LV diastolic dysfunction in this group.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

South Asians migrating to the Western world have a 3 to 5-fold higher risk of developing type 2 diabetes and double the risk of cardiovascular disease (CVD) than the background population of White European descent, without exhibiting a proportional higher prevalence of conventional cardiometabolic risk factors. Notably, women of South Asian descent are more likely to be diagnosed with type 2 diabetes as they grow older compared with South Asian men and, in addition, they have lost the cardio-protective effects of being females. Despite South Asian women in Western countries being a high risk group for developing future type 2 diabetes and CVD, they have been largely overlooked. The aims of this thesis were to compare lifestyle factors, body composition and cardiometabolic risk factors in healthy South Asian and European women who reside in Scotland, to examine whether ethnicity modifies the associations between modifiable environmental factors and cardiometabolic risks and to assess whether vascular reactivity is altered by ethnicity or other conventional and novel CVD risks. I conducted a cross-sectional study and recruited 92 women of South Asian and 87 women of White European descent without diagnosed diabetes or CVD. Women on hormone replacement therapy or hormonal contraceptives were excluded too. Age and body mass index (BMI) did not differ between the two ethnic groups. Physical activity was assessed and with self-reported questionnaires and objectively with the use of accelerometers. Cardiorespiratory fitness was quantified with the predicted maximal oxygen uptake (VO2 max) during a submaximal test (Chester step test). Body composition was assessed with skinfolds measured at seven body sites, five body circumferences, measurement of abdominal subcutaneous (SAT) and visceral adipose tissue (VAT) with the use of magnetic resonance imaging (MRI) and liver fat with the use MR spectroscopy. Dietary density was assessed with food frequency questionnaires. Vascular response was assessed by measuring the response to acetylcholine and sodium nitroprusside with the use of Laser Doppler Imaging with Iontophoresis (LDI-ION) and the response to shear stress with the use of Peripheral Arterial Tonometry (EndoPAT). The South Asian women exhibited a metabolic profile consistent with the insulin resistant phenotype, characterised by greater levels of fasting insulin, lower levels of high density lipoprotein (HDL) and higher levels of triglycerides (TG) compared with their European counterparts. In addition, the South Asians had greater levels of glycated haemoglobin (HbA1c) for any given level of fasting glucose. The South Asian women engaged less time weekly with moderate to vigorous physical activity (MVPA) and had lower levels of cardiorespiratory fitness for any given level of physical activity than the women of White descent. In addition, they accumulated more fat centrally for any given BMI. Notably, the South Asians had equivalent SAT with the European women but greater VAT and hepatic fat for any given BMI. Dietary density did not differ among the groups. Increasing central adiposity had the largest effect on insulin resistance in both ethic groups compared with physical inactivity or decreased cardiorespiratory fitness. Interestingly, ethnicity modified the association between central adiposity and insulin resistance index with a similar increase in central adiposity having a substantially larger effect on insulin resistance index in the South Asian women than in the Europeans. I subsequently examined whether ethnic specific thresholds are required for lifestyle modifications and demonstrated that South Asian women need to engage with MVPA for around 195 min.week-1 in order to equate their cardiometabolic risk with that of the Europeans exercising 150 min.week-1. In addition, lower thresholds of abdominal adiposity and BMI should apply for the South Asians compared with the conventional thresholds. Although the South Asians displayed an adverse metabolic profile, vascular reactivity measured with both methods did not differ among the two groups. An additional finding was that menopausal women with hot flushing of both ethnic groups showed a paradoxical vascular profile with enhanced skin perfusion (measured with LDI-ION) but decreased reactive hyperaemia index (measured with EndoPAT) compared with asymptomatic menopausal women. The latter association was independent of conventional CVD risk factors. To conclude, South Asian women without overt disease who live in Scotland display an adverse metabolic profile with steeper associations between lifestyle risk factors and adverse cardiometabolic outcomes compared with their White counterparts. Further work in exploring ethnic specific thresholds in lifestyle interventions or in disease diagnosis is warranted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Physical activity in children with intellectual disabilities is a neglected area of study, which is most apparent in relation to physical activity measurement research. Although objective measures, specifically accelerometers, are widely used in research involving children with intellectual disabilities, existing research is based on measurement methods and data interpretation techniques generalised from typically developing children. However, due to physiological and biomechanical differences between these populations, questions have been raised in the existing literature on the validity of generalising data interpretation techniques from typically developing children to children with intellectual disabilities. Therefore, there is a need to conduct population-specific measurement research for children with intellectual disabilities and develop valid methods to interpret accelerometer data, which will increase our understanding of physical activity in this population. Methods Study 1: A systematic review was initially conducted to increase the knowledge base on how accelerometers were used within existing physical activity research involving children with intellectual disabilities and to identify important areas for future research. A systematic search strategy was used to identify relevant articles which used accelerometry-based monitors to quantify activity levels in ambulatory children with intellectual disabilities. Based on best practice guidelines, a novel form was developed to extract data based on 17 research components of accelerometer use. Accelerometer use in relation to best practice guidelines was calculated using percentage scores on a study-by-study and component-by-component basis. Study 2: To investigate the effect of data interpretation methods on the estimation of physical activity intensity in children with intellectual disabilities, a secondary data analysis was conducted. Nine existing sets of child-specific ActiGraph intensity cut points were applied to accelerometer data collected from 10 children with intellectual disabilities during an activity session. Four one-way repeated measures ANOVAs were used to examine differences in estimated time spent in sedentary, moderate, vigorous, and moderate to vigorous intensity activity. Post-hoc pairwise comparisons with Bonferroni adjustments were additionally used to identify where significant differences occurred. Study 3: The feasibility on a laboratory-based calibration protocol developed for typically developing children was investigated in children with intellectual disabilities. Specifically, the feasibility of activities, measurements, and recruitment was investigated. Five children with intellectual disabilities and five typically developing children participated in 14 treadmill-based and free-living activities. In addition, resting energy expenditure was measured and a treadmill-based graded exercise test was used to assess cardiorespiratory fitness. Breath-by-breath respiratory gas exchange and accelerometry were continually measured during all activities. Feasibility was assessed using observations, activity completion rates, and respiratory data. Study 4: Thirty-six children with intellectual disabilities participated in a semi-structured school-based physical activity session to calibrate accelerometry for the estimation of physical activity intensity. Participants wore a hip-mounted ActiGraph wGT3X+ accelerometer, with direct observation (SOFIT) used as the criterion measure. Receiver operating characteristic curve analyses were conducted to determine the optimal accelerometer cut points for sedentary, moderate, and vigorous intensity physical activity. Study 5: To cross-validate the calibrated cut points and compare classification accuracy with existing cut points developed in typically developing children, a sub-sample of 14 children with intellectual disabilities who participated in the school-based sessions, as described in Study 4, were included in this study. To examine the validity, classification agreement was investigated between the criterion measure of SOFIT and each set of cut points using sensitivity, specificity, total agreement, and Cohen’s kappa scores. Results Study 1: Ten full text articles were included in this review. The percentage of review criteria met ranged from 12%−47%. Various methods of accelerometer use were reported, with most use decisions not based on population-specific research. A lack of measurement research, specifically the calibration/validation of accelerometers for children with intellectual disabilities, is limiting the ability of researchers to make appropriate and valid accelerometer use decisions. Study 2: The choice of cut points had significant and clinically meaningful effects on the estimation of physical activity intensity and sedentary behaviour. For the 71-minute session, estimations for time spent in each intensity between cut points ranged from: sedentary = 9.50 (± 4.97) to 31.90 (± 6.77) minutes; moderate = 8.10 (± 4.07) to 40.40 (± 5.74) minutes; vigorous = 0.00 (± .00) to 17.40 (± 6.54) minutes; and moderate to vigorous = 8.80 (± 4.64) to 46.50 (± 6.02) minutes. Study 3: All typically developing participants and one participant with intellectual disabilities completed the protocol. No participant met the maximal criteria for the graded exercise test or attained a steady state during the resting measurements. Limitations were identified with the usability of respiratory gas exchange equipment and the validity of measurements. The school-based recruitment strategy was not effective, with a participation rate of 6%. Therefore, a laboratory-based calibration protocol was not feasible for children with intellectual disabilities. Study 4: The optimal vertical axis cut points (cpm) were ≤ 507 (sedentary), 1008−2300 (moderate), and ≥ 2301 (vigorous). Sensitivity scores ranged from 81−88%, specificity 81−85%, and AUC .87−.94. The optimal vector magnitude cut points (cpm) were ≤ 1863 (sedentary), ≥ 2610 (moderate) and ≥ 4215 (vigorous). Sensitivity scores ranged from 80−86%, specificity 77−82%, and AUC .86−.92. Therefore, the vertical axis cut points provide a higher level of accuracy in comparison to the vector magnitude cut points. Study 5: Substantial to excellent classification agreement was found for the calibrated cut points. The calibrated sedentary cut point (ĸ =.66) provided comparable classification agreement with existing cut points (ĸ =.55−.67). However, the existing moderate and vigorous cut points demonstrated low sensitivity (0.33−33.33% and 1.33−53.00%, respectively) and disproportionately high specificity (75.44−.98.12% and 94.61−100.00%, respectively), indicating that cut points developed in typically developing children are too high to accurately classify physical activity intensity in children with intellectual disabilities. Conclusions The studies reported in this thesis are the first to calibrate and validate accelerometry for the estimation of physical activity intensity in children with intellectual disabilities. In comparison with typically developing children, children with intellectual disabilities require lower cut points for the classification of moderate and vigorous intensity activity. Therefore, generalising existing cut points to children with intellectual disabilities will underestimate physical activity and introduce systematic measurement error, which could be a contributing factor to the low levels of physical activity reported for children with intellectual disabilities in previous research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: The purpose of this study was to develop and test psychometric properties of a Mealtime Interaction Clinical Observation Tool (MICOT) that could be used to facilitate assessment and behavioural intervention in childhood feeding difficulties. Methods: Thematic analysis of four focus groups with feeding and behaviour experts identified the content and structure of the MICOT. Following refinement, inter-rater reliability was tested between three healthcare professionals. Results: Six themes were identified for the MICOT, which utilises a traffic-light system to identify areas of strength and areas for intervention. Despite poor inter-rater reliability, for which a number of reasons are postulated, some correlation between psychologists’ ratings was evident. Healthcare professionals liked the tool and reported that it could have good clinical utility. Conclusion: The study provides a promising first version of a clinical observation tool that facilitates assessment and behavioural intervention in childhood feeding difficulties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The work presented herein focused on the automation of coordination-driven self assembly, exploring methods that allow syntheses to be followed more closely while forming new ligands, as part of the fundamental study of the digitization of chemical synthesis and discovery. Whilst the control and understanding of the principle of pre-organization and self-sorting under non-equilibrium conditions remains a key goal, a clear gap has been identified in the absence of approaches that can permit fast screening and real-time observation of the reaction process under different conditions. A firm emphasis was thus placed on the realization of an autonomous chemical robot, which can not only monitor and manipulate coordination chemistry in real-time, but can also allow the exploration of a large chemical parameter space defined by the ligand building blocks and the metal to coordinate. The self-assembly of imine ligands with copper and nickel cations has been studied in a multi-step approach using a self-built flow system capable of automatically controlling the liquid-handling and collecting data in real-time using a benchtop MS and NMR spectrometer. This study led to the identification of a transient Cu(I) species in situ which allows for the formation of dimeric and trimeric carbonato bridged Cu(II) assemblies. Furthermore, new Ni(II) complexes and more remarkably also a new binuclear Cu(I) complex, which usually requires long and laborious inert conditions, could be isolated. The study was then expanded to the autonomous optimization of the ligand synthesis by enabling feedback control on the chemical system via benchtop NMR. The synthesis of new polydentate ligands has emerged as a result of the study aiming to enhance the complexity of the chemical system to accelerate the discovery of new complexes. This type of ligand consists of 1-pyridinyl-4-imino-1,2,3-triazole units, which can coordinate with different metal salts. The studies to test for the CuAAC synthesis via microwave lead to the discovery of four new Cu complexes, one of them being a coordination polymer obtained from a solvent dependent crystallization technique. With the goal of easier integration into an automated system, copper tubing has been exploited as the chemical reactor for the synthesis of this ligand, as it efficiently enhances the rate of the triazole formation and consequently promotes the formation of the full ligand in high yields within two hours. Lastly, the digitization of coordination-driven self-assembly has been realized for the first time using an in-house autonomous chemical robot, herein named the ‘Finder’. The chemical parameter space to explore was defined by the selection of six variables, which consist of the ligand precursors necessary to form complex ligands (aldehydes, alkineamines and azides), of the metal salt solutions and of other reaction parameters – duration, temperature and reagent volumes. The platform was assembled using rounded bottom flasks, flow syringe pumps, copper tubing, as an active reactor, and in-line analytics – a pH meter probe, a UV-vis flow cell and a benchtop MS. The control over the system was then obtained with an algorithm capable of autonomously focusing the experiments on the most reactive region (by avoiding areas of low interest) of the chemical parameter space to explore. This study led to interesting observations, such as metal exchange phenomena, and also to the autonomous discovery of self assembled structures in solution and solid state – such as 1-pyridinyl-4-imino-1,2,3-triazole based Fe complexes and two helicates based on the same ligand coordination motif.