2 resultados para self-etching adhesive systems

em Glasgow Theses Service


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Developments in theory and experiment have raised the prospect of an electronic technology based on the discrete nature of electron tunnelling through a potential barrier. This thesis deals with novel design and analysis tools developed to study such systems. Possible devices include those constructed from ultrasmall normal tunnelling junctions. These exhibit charging effects including the Coulomb blockade and correlated electron tunnelling. They allow transistor-like control of the transfer of single carriers, and present the prospect of digital systems operating at the information theoretic limit. As such, they are often referred to as single electronic devices. Single electronic devices exhibit self quantising logic and good structural tolerance. Their speed, immunity to thermal noise, and operating voltage all scale beneficially with junction capacitance. For ultrasmall junctions the possibility of room temperature operation at sub picosecond timescales seems feasible. However, they are sensitive to external charge; whether from trapping-detrapping events, externally gated potentials, or system cross-talk. Quantum effects such as charge macroscopic quantum tunnelling may degrade performance. Finally, any practical system will be complex and spatially extended (amplifying the above problems), and prone to fabrication imperfection. This summarises why new design and analysis tools are required. Simulation tools are developed, concentrating on the basic building blocks of single electronic systems; the tunnelling junction array and gated turnstile device. Three main points are considered: the best method of estimating capacitance values from physical system geometry; the mathematical model which should represent electron tunnelling based on this data; application of this model to the investigation of single electronic systems. (DXN004909)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Self-replication and compartmentalization are two central properties thought to be essential for minimal life, and understanding how such processes interact in the emergence of complex reaction networks is crucial to exploring the development of complexity in chemistry and biology. Autocatalysis can emerge from multiple different mechanisms such as formation of an initiator, template self-replication and physical autocatalysis (where micelles formed from the reaction product solubilize the reactants, leading to higher local concentrations and therefore higher rates). Amphiphiles are also used in artificial life studies to create protocell models such as micelles, vesicles and oil-in-water droplets, and can increase reaction rates by encapsulation of reactants. So far, no template self-replicator exists which is capable of compartmentalization, or transferring this molecular scale phenomenon to micro or macro-scale assemblies. Here a system is demonstrated where an amphiphilic imine catalyses its own formation by joining a non-polar alkyl tail group with a polar carboxylic acid head group to form a template, which was shown to form reverse micelles by Dynamic Light Scattering (DLS). The kinetics of this system were investigated by 1H NMR spectroscopy, showing clearly that a template self-replication mechanism operates, though there was no evidence that the reverse micelles participated in physical autocatalysis. Active oil droplets, composed from a mixture of insoluble organic compounds in an aqueous sub-phase, can undergo processes such as division, self-propulsion and chemotaxis, and are studied as models for minimal cells, or protocells. Although in most cases the Marangoni effect is responsible for the forces on the droplet, the behaviour of the droplet depends heavily on the exact composition. Though theoretical models are able to calculate the forces on a droplet, to model a mixture of oils on an aqueous surface where compounds from the oil phase are dissolving and diffusing through the aqueous phase is beyond current computational capability. The behaviour of a droplet in an aqueous phase can only be discovered through experiment, though it is determined by the droplet's composition. By using an evolutionary algorithm and a liquid handling robot to conduct droplet experiments and decide which compositions to test next, entirely autonomously, the composition of the droplet becomes a chemical genome capable of evolution. The selection is carried out according to a fitness function, which ranks the formulation based on how well it conforms to the chosen fitness criteria (e.g. movement or division). Over successive generations, significant increases in fitness are achieved, and this increase is higher with more components (i.e. greater complexity). Other chemical processes such as chemiluminescence and gelation were investigated in active oil droplets, demonstrating the possibility of controlling chemical reactions by selective droplet fusion. Potential future applications for this might include combinatorial chemistry, or additional fitness goals for the genetic algorithm. Combining the self-replication and the droplet protocells research, it was demonstrated that the presence of the amphiphilic replicator lowers the interfacial tension between droplets of a reaction mixture in organic solution and the alkaline aqueous phase, causing them to divide. Periodic sampling by a liquid handling robot revealed that the extent of droplet fission increased as the reaction progressed, producing more individual protocells with increased self-replication. This demonstrates coupling of the molecular scale phenomenon of template self-replication to a macroscale physicochemical effect.