3 resultados para regulator protein

em Glasgow Theses Service


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Acute myeloid leukemia (AML) involves the proliferation, abnormal survival and arrest of cells at a very early stage of myeloid cell differentiation. The biological and clinical heterogeneity of this disease complicates treatment and highlights the significance of understanding the underlying causes of AML, which may constitute potential therapeutic targets, as well as offer prognostic information. Tribbles homolog 2 (Trib2) is a potent murine oncogene capable of inducing transplantable AML with complete penetrance. The pathogenicity of Trib2 is attributed to its ability to induce proteasomal degradation of the full length isoform of the transcription factor CCAAT/enhancer-binding protein alpha (C/EBPα p42). The role of TRIB2 in human AML cells, however, has not been systematically investigated or targeted. Across human cancers, TRIB2 oncogenic activity was found to be associated with its elevated expression. In the context of AML, TRIB2 overexpression was suggested to be associated with the large and heterogeneous subset of cytogenetically normal AML patients. Based upon the observation that overexpression of TRIB2 has a role in cellular transformation, the effect of modulating its expression in human AML was examined in a human AML cell line that expresses high levels of TRIB2, U937 cells. Specific suppression of TRIB2 led to impaired cell growth, as a consequence of both an increase in apoptosis and a decrease in cell proliferation. Consistent with these in vitro results, TRIB2 silencing strongly reduced progression of the U937 in vivo xenografts, accompanied by detection of a lower spleen weight when compared with mice transplanted with TRIB2- expressing control cells. Gene expression analysis suggested that TRIB2 modulates apoptosis and cell-cycle sensitivity by influencing the expression of a subset of genes known to have implications on these phenotypes. Furthermore, TRIB2 was found to be expressed in a significant subset of AML patient samples analysed. To investigate whether increased expression of this gene could be afforded prognostic significance, primary AML cells with dichotomized levels of TRIB2 transcripts were evaluated in terms of their xenoengraftment potential, an assay reported to correlate with disease aggressiveness observed in humans. A small cohort of analysed samples with higher TRIB2 expression did not associate with preferential leukaemic cell engraftment in highly immune-deficient mice, hence, not predicting for an adverse prognosis. However, further experiments including a larger cohort of well characterized AML patients would be needed to clarify TRIB2 significance in the diagnostic setting. Collectively, these data support a functional role for TRIB2 in the maintenance of the oncogenic properties of human AML cells and suggest TRIB2 can be considered a rational therapeutic target. Proteasome inhibition has emerged as an attractive target for the development of novel anti-cancer therapies and results from translational research and clinical trials support the idea that proteasome inhibitors should be considered in the treatment of AML. The present study argued that proteasome inhibition would effectively inhibit the function of TRIB2 by abrogating C/EBPα p42 protein degradation and that it would be an effective pharmacological targeting strategy in TRIB2-positive AMLs. Here, a number of cell models expressing high levels of TRIB2 were successfully targeted by treatment with proteasome inhibitors, as demonstrated by multiple measurements that included increased cytotoxicity, inhibition of clonogenic growth and anti-AML activity in vivo. Mechanistically, it was shown that block of the TRIB2 degradative function led to an increase of C/EBPα p42 and that response was specific to the TRIB2-C/EBPα axis. Specificity was addressed by a panel of experiments showing that U937 cells (express detectable levels of endogenous TRIB2 and C/EBPα) treated with the proteasome inhibitor bortezomib (Brtz) displayed a higher cytotoxic response upon TRIB2 overexpression and that ectopic expression of C/EBPα rescued cell death. Additionally, in C/EBPα-negative leukaemia cells, K562 and Kasumi 1, Brtz-induced toxicity was not increased following TRIB2 overexpression supporting the specificity of the compound on the TRIB2-C/EBPα axis. Together these findings provide pre-clinical evidence that TRIB2- expressing AML cells can be pharmacologically targeted with proteasome inhibition due, in part, to blockage of the TRIB2 proteolytic function on C/EBPα p42. A large body of evidence indicates that AML arises through the stepwise acquisition of genetic and epigenetic changes. Mass spectrometry data has identified an interaction between TRIB2 and the epigenetic regulator Protein Arginine Methyltransferase 5 (PRMT5). Following assessment of TRIB2‟s role in AML cell survival and effective targeting of the TRIB2-C/EBPα degradation pathway, a putative TRIB2/PRMT5 cooperation was investigated in order to gain a deeper understanding of the molecular network in which TRIB2 acts as a potent myeloid oncogene. First, a microarray data set was interrogated for PRMT5 expression levels and the primary enzyme responsible for symmetric dimethylation was found to be transcribed at significantly higher levels in AML patients when compared to healthy controls. Next, depletion of PRMT5 in the U937 cell line was shown to reduce the transformative phenotype in the high expressing TRIB2 AML cells, which suggests that PRMT5 and TRIB2 may cooperate to maintain the leukaemogenic potential. Importantly, PRMT5 was identified as a TRIB2-interacting protein by means of a protein tagging approach to purify TRIB2 complexes from 293T cells. These findings trigger further research aimed at understanding the underlying mechanism and the functional significance of this interplay. In summary, the present study provides experimental evidence that TRIB2 has an important oncogenic role in human AML maintenance and, importantly in such a molecularly heterogeneous disease, provides the rational basis to consider proteasome inhibition as an effective targeting strategy for AML patients with high TRIB2 expression. Finally, the identification of PRMT5 as a TRIB2-interacting protein opens a new level of regulation to consider in AML. This work may contribute to our further understanding and therapeutic strategies in acute leukaemias.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most eukaryotic cell motility relies on plasma membrane protrusions, which depend on the actin cytoskeleton and its tight regulation. The SCAR/WAVE complex, a pentameric assembly comprising SCAR/WAVE, Nap1, CYFIP/Pir121, Abi and HSPC300, is a key driver of actin-based protrusions such as pseudopods. SCAR/WAVE is thought to activate the Arp2/3 complex, a crucial actin nucleator, after being itself activated by upstream signals such as active Rac1. Despite recent progress on the study of the SCAR/WAVE complex, its regulation is still incompletely understood, with Nap1’s role being particularly enigmatic. Upon screening for potential Nap1 binding partners in the social amoeba Dictyostelium discoideum – a well established model organism in the study of the actin cytoskeleton and cell motility – we found FAM49, a ~36 kDa protein of unknown function which is highly conserved in Metazoa (animals) and evolutionarily closer species such as D. discoideum. Interestingly, D. discoideum’s FAM49 and its homologs contain a DUF1394 domain, which is also predicted in CYFIP/Pir121 proteins and most likely involved in their direct binding to active Rac1, which in turn contributes to SCAR/WAVE’s activation. FAM49’s unknown role, apparent high degree of conservation and potential connections to SCAR/WAVE and Rac1 persuaded us to start investigating its function and biological relevance in D. discoideum, leading to the work presented in this thesis. Several pieces of our data collectively support a function for FAM49 in modulating the protrusive behaviour, and ultimately motility, of D. discoideum cells, as well as a regulatory link between FAM49 and Rac1. FAM49’s involvement in protrusion regulation was first hinted at by our observation that GFP-tagged FAM49 is enriched in pseudopods. The possibility of a link with Rac1 was then strengthened by two additional observations: first, pseudopodial GFP-FAM49 is substantially co-enriched with active Rac, both showing fairly comparable spatio-temporal accumulation dynamics; second, when dominant-active (G12V) Rac1 is expressed in cells, it triggers the recruitment and persistent accumulation of GFP-FAM49 at the plasma membrane, where both become highly co-enriched. We subsequently determined that fam49 KO cells differ from wild-type cells in the way they protrude and move, as assessed in under-agarose chemotaxis assays. In particular, our data indicate that fam49 KO cells tend to display a lower degree of global protrusive activity, their protrusions extend more slowly and are less discrete, and the cells end up moving at lower speeds and with higher directional persistence. This phenotype was substantially rescued by FAM49 re-expression. While re-expressing FAM49 in fam49 KO cells we generated putative FAM49 overexpressor cells; compared to wild-type cells, they displayed atypically thin pseudopods and what seemed to be an excessively dynamic, and perhaps less coordinated, protrusive behaviour. Additional data in our study suggest that pseudopods made by fam49 KO cells are still driven by SCAR/WAVE, which is clearly not being replaced by WASP (as is now known to be the case in D. discoideum cells lacking a functional SCAR/WAVE complex). Nonetheless, the peculiar dynamics of those pseudopods imply that SCAR/WAVE’s activity is regulated differently when FAM49 is lost, though it remains to be determined how. This thesis is the first report of a dedicated study on FAM49 and lays the foundation for future research on it.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AMP-activated protein kinase (AMPK) is a key regulator of cell energy homeostasis. More recently, it has become apparent that AMPK regulates cell proliferation, migration and inflammation. Previous evidence has suggested that AMPK may influence proliferation and invasion by regulating the pro-proliferative mitogen-activated protein kinases (MAPKs). However, the mechanisms underlying this crosstalk between AMPK and MAPK signalling are not fully understood. As AMPK activation has been reported to have anti-proliferative effects, there has been increasing interest in AMPK activation as a therapeutic target for tumourigenesis. The aim of this study was to investigate whether AMPK activation influenced prostate cancer (PC) cell line proliferation, migration and signalling. Therefore, different PC cell lines were incubated with two structurally-unrelated molecules that activate AMPK by different mechanisms, AICAR and A769662. Both chemicals activated AMPK in a concentration- and time-dependent manner in PC3, DU145 and LNCaP cell lines. AMPK activity as assessed by AMPK activating phosphorylation as well as phosphorylation of the AMPK substrate ACC increased along with tumour severity in PC biopsies. Furthermore, both activators of AMPK decreased cell proliferation and migration in the androgen-independent PC cell lines PC3 and DU145. Inhibition of proliferation by A769662 was attenuated in AMPK α1-/- AMPK α2-/- knockout (KO) mouse embryonic fibroblasts (MEFs) compared to wild type (WT) MEFs, and the inhibitory effect on migration of AICAR lost significance in PC3 cells infected with adenoviruses expressing a dominant negative AMPK α mutant, indicating these effects are partially mediated by AMPK. Furthermore, long-term activation of AMPK was associated with inhibition of both the phosphatidylinositol 3’-kinase/protein kinase B (PI3K/Akt) signalling pathway in addition to the extracellular signal-regulated kinase 1/2 (ERK1/2) signalling pathway. Indeed, the actions of AMPK activators on PC cell line viability were mimicked by selective inhibitors of Akt and ERK1/2 pathways. In contrast to the effects of prolonged incubation with AMPK activators, short-term incubation with AMPK activators had no effect on epidermal growth factor (EGF)-stimulated ERK1/2 phosphorylation in PC cell lines. In addition, AMPK activation did not influence phosphorylation of the other MAPK family members p38 and JNK. Interestingly, both AICAR and A769662 decreased EGF-stimulated ERK5 phosphorylation in PC3, DU145 and LNCaP cells as assessed with an anti-phospho-ERK5 antibody. Further characterisation of this effect indicated that prior stimulation with the AMPK activators had no effect on ERK5 phosphorylation stimulated by transient transfection with a constitutively active ERK5 kinase (MEK5DD), which represents the only known canonical kinase for ERK5. Intriguingly, the pattern of EGF-stimulated ERK5 phosphorylation was distinct from that mediated by MEK5DD activation of ERK5. This finding indicates that AMPK activation inhibits EGF-stimulated ERK5 phosphorylation at a point at or above the level of MEK5, although why EGF and constitutively active MEK5 stimulate markedly different immunoreactive species recognised by the anti-phospho-ERK5 antibody requires further study. A769662 had a tendency to reduce EGF-stimulated ERK5 phosphorylation in WT MEFs, yet was without effect in MEFs lacking AMPK. These data indicate that AMPK may underlie the effect of A769662 to reduce EGF-stimulated ERK5 phosphorylation. Prolonged stimulation of PC cell lines with AICAR or A769662 inhibited EGF-stimulated Akt Ser473 phosphorylation, whereas only incubation with A769662 rapidly inhibited Akt phosphorylation. This difference in the actions of the different AMPK activators may suggest an AMPK-independent effect of A769662. Furthermore, AICAR increased phosphorylation of Akt in WT MEFs, an effect that was absent in MEFs lacking AMPK, indicating that this effect of AICAR may be AMPK-dependent. Taken together, the data presented in this study suggest that AMPK activators markedly inhibit proliferation and migration of PC cell lines, reduce EGF-stimulated ERK1/2 and Akt phosphorylation after prolonged incubation and rapidly inhibit ERK5 phosphorylation. Both AMPK activators exhibit a number of effects that are likely to be independent of AMPK in PC cell lines, although inhibition of ERK1/2, ERK5 and Akt may underlie the effects of AMPK activators on proliferation, viability and migration. Further studies are required to understand the crosstalk between those signalling pathways and their underlying significance in PC progression.