2 resultados para refractive index
em Glasgow Theses Service
Resumo:
This thesis explores the potential of chiral plasmonic nanostructures for the ultrasensitive detection of protein structure. These nanostructures support the generation of fields with enhanced chirality relative to circularly polarised light and are an extremely incisive probe of protein structure. In chapter 4 we introduce a nanopatterned Au film (Templated Plasmonic Substrate, TPS) fabricated using a high through-put injection moulding technique which is a viable alternative to expensive lithographically fabricated nanostructures. The optical and chiroptical properties of TPS nanostructures are found to be highly dependent on the coupling between the electric and magnetic modes of the constituent solid and inverse structures. Significantly, refractive index based measurements of strongly coupled TPSs display a similar sensitivity to protein structure as previous lithographic nanostructures. We subsequently endeavour to improve the sensing properties of TPS nanostructures by developing a high through-put nanoscale chemical functionalisation technique. This process involves a chemical protection/deprotection strategy. The protection step generates a self-assembled monolayer (SAM) of a thermally responsive polymer on the TPS surface which inhibits protein binding. The deprotection step exploits the presence of nanolocalised thermal gradients in the water surrounding the TPS upon irradiation with an 8ns pulsed laser to modify the SAM conformation on surfaces with high net chirality. This allows binding of biomaterial in these regions and subsequently enhances the TPS sensitivity levels. In chapter 6 an alternative method for the detection of protein structure using TPS nanostructures is introduced. This technique relies on mediation of the electric/magnetic coupling in the TPS by the adsorbed protein. This phenomenon is probed through both linear reflectance and nonlinear second harmonic generation (SHG) measurements. Detection of protein structure using this method does not require the presence of fields of enhanced chirality whilst it is also sensitive to a larger array of secondary structure motifs than the measurements in chapters 4 and 5. Finally, a preliminary investigation into the detection of mesoscale biological structure is presented. Sensitivity to the mesoscale helical pitch of insulin amyloid fibrils is displayed through the asymmetry in the circular dichroism (CD) of lithographic gammadions of varying thickness upon adsorption of insulin amyloid fibril spherulites and fragmented fibrils. The proposed model for this sensitivity to the helical pitch relies on the vertical height of the nanostructures relative to this structural property as well as the binding orientation of the fibrils.
Resumo:
This thesis studies the parametric investigation, polarisation dependence and characterization of fishnet structure at near infrared wavelengths. Detailed simulations are performed to understand the behaviour of the structure at near infrared and optical wavelengths. Simulations are performed to obtain negative refractive index of the fishnet structure formed from nanoimprint lithography (NIL) by taking into account the effect of substrate and polymethyl methacrylate (PMMA) beneath it. Two different structures have been designed and fabricated of varying dimensions using NIL and their resonant wavelength measured in the near infrared at 1.45 µm and 1.88 µm. Simulations suggest that a negative refractive index real part with the magnitude -0.24 is found at 1.53 µm and this decrease to a maximum magnitude of -0.57 at 1.9 µm. The PMMA and suppressed pillars are here responsible for the increasing material losses and limiting the value of negative refractive index. An analytical approach has been suggested to characterise fishnet structures at oblique incidence. The expressions for an absorbing medium are rewritten for an alternative definition of refractive index. The expressions are initially validated for a dielectric slab and a metal film. These results provide the possibility that this proposal may yield a general algorithm for obtaining the complex reflection and transmission coefficients for artificial structures. FDTD simulations have been extensively used in this thesis to understand the optical metamaterials and their characterization.