2 resultados para plant functional types
em Glasgow Theses Service
Resumo:
The ligaments of the wrist are highly variable and poorly described, which is more obvious on the ulnar side of the wrist. Previous studies highlighted the potential differences within the ligaments of the wrist but no consensus has been reached. Poor tissue description and inconsistent use of terminology hindered the reproducibility of the results. Improved understanding of the morphological variations between carpal bones may facilitate improved understanding of the ligamentous structure within the wrist. This study aims to identify the potential variations between carpal bones that could be used to separate palmar ligamentous patterns around the triquetrum-hamate joint into subgroups within the sample population. Investigations were performed following a detailed nomenclature and a clear definition of ligamentous structures to facilitate detailed description and reproducible results. Quantitative analyses were conducted using 3D modelling technique. Histological sections were then analysed to identify the structure of each ligamentous attachment. Variable patterns of ligamentous attachments were identified. Differences were not only obvious between samples but also between the right and left hands of the same person. These identifications suggested that the palmar ligamentous patterns around the triquetrum-hamate joint are best described as a spectrum with a higher affinity of the triquetrum-hamate-capitate ligament and the lunate-triquetrum ligament to be associated with type I lunate wrists on one extreme and type II lunate wrists with the palmar triquetrum-hamate ligament, triquetrum-hamate-capitate ligament and palmar radius-lunate-triquetrum ligament attachments at the other extreme. Histological analyses confirmed pervious established work regarding the mechanical role of ligaments in wrist joint biomechanics. Also, there were no significant differences between the quantitative data obtained from the Genelyn-embalmed and unembalmed specimens (p>0.05). The current study demonstrated variable ligamentous patterns that suggest different bone restraints and two different patterns of motion. These findings support previous suggestions regarding separating the midcarpal joint into two distinct functional types. Type I wrists were identified with ligamentous attachments that are suggestive of rotating/translating hamate whilst type II wrists identified with ligamentous attachments that are suggestive of flexing/extending hamate motion based upon the patterns of the ligamentous attachments in relation to the morphological features of the underlying lunate type of the wrist. This opens the horizon for particular consideration and/or modification of surgical procedures, which may enhance the clinical management of wrist dysfunction.
Resumo:
Stem cell therapy for ischaemic stroke is an emerging field in light of an increasing number of patients surviving with permanent disability. Several allogenic and autologous cells types are now in clinical trials with preliminary evidence of safety. Some clinical studies have reported functional improvements in some patients. After initial safety evaluation in a Phase 1 study, the conditionally immortalised human neural stem cell line CTX0E03 is currently in a Phase 2 clinical trial (PISCES-II). Previous pre-clinical studies conducted by ReNeuron Ltd, showed evidence of functional recovery in the Bilateral Asymmetry test up to 6 weeks following transplantation into rodent brain, 4 weeks after middle cerebral artery occlusion. Resting-state fMRI is increasingly used to investigate brain function in health and disease, and may also act as a predictor of recovery due to known network changes in the post-stroke recovery period. Resting-state methods have also been applied to non-human primates and rodents which have been found to have analogous resting-state networks to humans. The sensorimotor resting-state network of rodents is impaired following experimental focal ischaemia of the middle cerebral artery territory. However, the effects of stem cell implantation on brain functional networks has not previously been investigated. Prior studies assessed sensorimotor function following sub-cortical implantation of CTX0E03 cells in the rodent post-stroke brain but with no MRI assessments of functional improvements. This thesis presents research on the effect of sub-cortical implantation of CTX0E03 cells on the resting- state sensorimotor network and sensorimotor deficits in the rat following experimental stroke, using protocols based on previous work with this cell line. The work in this thesis identified functional tests of appropriate sensitivity for long-term dysfunction suitable for this laboratory, and investigated non-invasive monitoring of physiological variables required to optimize BOLD signal stability within a high-field MRI scanner. Following experimental stroke, rats demonstrated expected sensorimotor dysfunction and changes in the resting-state sensorimotor network. CTX0E03 cells did not improve post-stroke functional outcome (compared to previous studies) and with no changes in resting-state sensorimotor network activity. However, in control animals, we observed changes in functional networks due to the stereotaxic procedure. This illustrates the sensitivity of resting-state fMRI to stereotaxic procedures. We hypothesise that the damage caused by cell or vehicle implantation may have prevented functional and network recovery which has not been previously identified due to the application of different functional tests. The findings in this thesis represent one of few pre-clinical studies in resting-state fMRI network changes post-stroke and the only to date applying this technique to evaluate functional outcomes following a clinically applicable human neural stem cell treatment for ischaemic stroke. It was found that injury caused by stereotaxic injection should be taken into account when assessing the effectiveness of treatment.