2 resultados para performance comparison
em Glasgow Theses Service
Resumo:
Processors with large numbers of cores are becoming commonplace. In order to utilise the available resources in such systems, the programming paradigm has to move towards increased parallelism. However, increased parallelism does not necessarily lead to better performance. Parallel programming models have to provide not only flexible ways of defining parallel tasks, but also efficient methods to manage the created tasks. Moreover, in a general-purpose system, applications residing in the system compete for the shared resources. Thread and task scheduling in such a multiprogrammed multithreaded environment is a significant challenge. In this thesis, we introduce a new task-based parallel reduction model, called the Glasgow Parallel Reduction Machine (GPRM). Our main objective is to provide high performance while maintaining ease of programming. GPRM supports native parallelism; it provides a modular way of expressing parallel tasks and the communication patterns between them. Compiling a GPRM program results in an Intermediate Representation (IR) containing useful information about tasks, their dependencies, as well as the initial mapping information. This compile-time information helps reduce the overhead of runtime task scheduling and is key to high performance. Generally speaking, the granularity and the number of tasks are major factors in achieving high performance. These factors are even more important in the case of GPRM, as it is highly dependent on tasks, rather than threads. We use three basic benchmarks to provide a detailed comparison of GPRM with Intel OpenMP, Cilk Plus, and Threading Building Blocks (TBB) on the Intel Xeon Phi, and with GNU OpenMP on the Tilera TILEPro64. GPRM shows superior performance in almost all cases, only by controlling the number of tasks. GPRM also provides a low-overhead mechanism, called “Global Sharing”, which improves performance in multiprogramming situations. We use OpenMP, as the most popular model for shared-memory parallel programming as the main GPRM competitor for solving three well-known problems on both platforms: LU factorisation of Sparse Matrices, Image Convolution, and Linked List Processing. We focus on proposing solutions that best fit into the GPRM’s model of execution. GPRM outperforms OpenMP in all cases on the TILEPro64. On the Xeon Phi, our solution for the LU Factorisation results in notable performance improvement for sparse matrices with large numbers of small blocks. We investigate the overhead of GPRM’s task creation and distribution for very short computations using the Image Convolution benchmark. We show that this overhead can be mitigated by combining smaller tasks into larger ones. As a result, GPRM can outperform OpenMP for convolving large 2D matrices on the Xeon Phi. Finally, we demonstrate that our parallel worksharing construct provides an efficient solution for Linked List processing and performs better than OpenMP implementations on the Xeon Phi. The results are very promising, as they verify that our parallel programming framework for manycore processors is flexible and scalable, and can provide high performance without sacrificing productivity.
Resumo:
Since turning professional in 1995 there have been considerable advances in the research on the demands of rugby union, largely using Global Positioning System (GPS) analysis over the last 10 years. A systematic review on the use of GPS, particularly the setting of absolute (ABS) and individual (IND) velocity bands in field based, intermittent, high-intensity (HI) team sports was undertaken. From 3669 records identified, 38 studies were included for qualitative analysis. Little agreement on the definition of movement intensities within team sports was found, only three papers, all on rugby union, had used IND bands, with only one comparing ABS and IND methods. Thus, the aim of this study was to determine if there is a difference in the demands within positions when comparing ABS and IND methods for GPS analysis and if these differences are significantly different between the forward and back positional groups. A total of 214 data files were recorded from 26 players in 17 matches of the 2015/2016 Scottish BT Premiership. ABS velocity zones 1-7 were set at 1) 0-6, 2) 6.1-11, 3) 11.1-15, 4) 15.1-18, 5) 18.1-21, 6) 21.1-15 and 7) 25.1-40km.h-1 while IND zones 1-7 were 1) <20, 2) 20-40, 3) 40-50, 4) 50-70, 5) 70-80, 6) 80-95 and 7) 95-100% of player’s individually determined maximum velocity (Vmax). A 40m sprint test measured Vmax using OptaPro S4 10 Hz (catapult, Australia) GPS units to derive IND bands. The same GPS units were worn during matches. GPS outputs analysed were % distance, % time, high intensity efforts (HIEs) over 18.1 km.h-1 / 70% max velocity and repeated high intensity efforts (RHIEs) which consists of three HIEs in 21secs. General linear model (GLM) analysis identified a significant difference in the measurement of % total distance covered, between the ABS and IND methods in all zones for forwards (p<0.05) and backs (p<0.05). This difference was also significant between forwards and backs in zones 1, shown as mean difference ± standard deviation (3.7±0.7%), 6 (1.2±0.4%) and 7 (1.0±0.0%) respectively (p<0.05). Percentage time estimations were significantly different between ABS and IND analysis within forwards in zones 1 (1.7±1.7%), 2 (-2.9±1.3%), 3 (1.9±0.8%), 4 (-1.4±0.8%) and 5 (0.2±0.4%), and within backs in zones 1 (-10±1.5%), 2 (-1.2±1.1%), 3 (1.8±0.9%) and 5 (0.6±0.5%) (p<0.05). The difference between groups was significant in zones 1, 2, 4 and 5 (p<0.05). The number of HIEs was significantly different between forwards and backs in zones 6 (6±2) and 7 (3±2). RHIEs were significantly different between ABS and IND for forwards (1±2, p<0.05) although not between groups. Until more research on the differences in ABS and IND methods is carried out, then neither can be deemed a criterion method. In conclusion, there are significant differences between the ABS and IND methods of GPS analysis of the physical demands of rugby union, which must be considered when used to inform training load and recovery to improve performance and reduce injuries.