2 resultados para pastoralists
em Glasgow Theses Service
Resumo:
Foot-and-mouth disease (FMD), a disease of cloven hooved animals caused by FMD virus (FMDV), is one of the most economically devastating diseases of livestock worldwide. The global burden of disease is borne largely by livestock-keepers in areas of Africa and Asia where the disease is endemic and where many people rely on livestock for their livelihoods and food-security. Yet, there are many gaps in our knowledge of the drivers of FMDV circulation in these settings. In East Africa, FMD epidemiology is complicated by the circulation of multiple FMDV serotypes (distinct antigenic variants) and by the presence of large populations of susceptible wildlife and domestic livestock. The African buffalo (Syncerus caffer) is the only wildlife species with consistent evidence of high levels of FMDV infection, and East Africa contains the largest population of this species globally. To inform FMD control in this region, key questions relate to heterogeneities in FMD prevalence and impacts in different livestock management systems and to the role of wildlife as a potential source of FMDV for livestock. To develop FMD control strategies and make best use of vaccine control options, serotype-specific patterns of circulation need to be characterised. In this study, the impacts and epidemiology of FMD were investigated across a range of traditional livestock-keeping systems in northern Tanzania, including pastoralist, agro-pastoralist and rural smallholder systems. Data were generated through field studies and laboratory analyses between 2010 and 2015. The study involved analysis of existing household survey data and generated serological data from cross-sectional livestock and buffalo samples and longitudinal cattle samples. Serological analyses included non-structural protein ELISAs, serotype-specific solid-phase competitive ELISAs, with optimisation to detect East African FMDV variants, and virus neutralisation testing. Risk factors for FMDV infection and outbreaks were investigated through analysis of cross-sectional serological data in conjunction with a case-control outbreak analysis. A novel Bayesian modeling approach was developed to infer serotype-specific infection history from serological data, and combined with virus isolation data from FMD outbreaks to characterise temporal and spatial patterns of serotype-specific infection. A high seroprevalence of FMD was detected in both northern Tanzanian livestock (69%, [66.5 - 71.4%] in cattle and 48.5%, [45.7-51.3%] in small ruminants) and in buffalo (80.9%, [74.7-86.1%]). Four different serotypes of FMDV (A, O, SAT1 and SAT2) were isolated from livestock. Up to three outbreaks per year were reported by households and active surveillance highlighted up to four serial outbreaks in the same herds within three years. Agro-pastoral and pastoral livestock keepers reported more frequent FMD outbreaks compared to smallholders. Households in all three management systems reported that FMD outbreaks caused significant impacts on milk production and sales, and on animals’ draught power, hence on crop production, with implications for food security and livelihoods. Risk factor analyses showed that older livestock were more likely to be seropositive for FMD (Odds Ratio [OR] 1.4 [1.4-1.5] per extra year) and that cattle (OR 3.3 [2.7-4.0]) were more likely than sheep and goats to be seropositive. Livestock managed by agro-pastoralists (OR 8.1 [2.8-23.6]) or pastoralists (OR 7.1 [2.9-17.6]) were more likely to be seropositive compared to those managed by smallholders. Larger herds (OR: 1.02 [1.01-1.03] per extra bovine) and those that recently acquired new livestock (OR: 5.57 [1.01 – 30.91]) had increased odds of suffering an FMD outbreak. Measures of potential contact with buffalo or with other FMD susceptible wildlife did not increase the likelihood of FMD in livestock in either the cross-sectional serological analysis or case-control outbreak analysis. The Bayesian model was validated to correctly infer from ELISA data the most recent serotype to infect cattle. Consistent with the lack of risk factors related to wildlife contact, temporal and spatial patterns of exposure to specific FMDV serotypes were not tightly linked in cattle and buffalo. In cattle, four serial waves of different FMDV serotypes that swept through southern Kenyan and northern Tanzanian livestock populations over a four-year period dominated infection patterns. In contrast, only two serotypes (SAT1 and SAT2) dominated in buffalo populations. Key conclusions are that FMD has a substantial impact in traditional livestock systems in East Africa. Wildlife does not currently appear to act as an important source of FMDV for East African livestock, and control efforts in the region should initially focus on livestock management and vaccination strategies. A novel modeling approach greatly facilitated the interpretation of serological data and may be a potent epidemiological tool in the African setting. There was a clear temporal pattern of FMDV antigenic dominance across northern Tanzania and southern Kenya. Longer-term research to investigate whether serotype-specific FMDV sweeps are truly predictable, and to shed light on FMD post-infection immunity in animals exposed to serial FMD infections is warranted.
Resumo:
Malignant Catarrhal Fever (MCF), an often-lethal infectious disease, presents as a variable complex of lesions in susceptible ungulate species. The disease is caused by a -herpesvirus following transmission from an inapparent carrier host. Two major epidemiological forms exist: wildebeest-associated MCF (WA-MCF), in which the virus is transmitted to susceptible species by wildebeest calves less than approximately four months of age, and sheepassociated MCF (SA-MCF) in which the virus is spread by sheep (primarily adolescents). Due to the lack of an in-vitro propagation system for the causative agent of the more economically significant SA-MCF, and with the expectation that cross-protective immunity may be provided, vaccine development has focused on the more easily propagated alcelaphine herpesvirus-1 (AlHV-1) that causes WA-MCF. In 2008 a direct viral challenge trial showed that a novel vaccine, employing an attenuated AlHV-1 (atAlHV-1) `C5000 virus strain, protected British Friesian-Holstein (FH) cattle against an intranasal challenge with virulent AlHV-1 `C5000 virus. For cattle keeping people living near wildebeest calving areas in sub-Saharan Africa an effective vaccine would have value as it would release them from the costly annual disease avoidance strategy of having to move their herds away from the oncoming wildebeest. On the other hand, an effective vaccine will release herd owners from the need to avoid MCF, allowing them to graze their cattle alongside wildebeest on the highly nutritious pastures of the calving areas. As such conservationists have raised concerns that the development of a vaccine might lead to detrimental grazing competition. The principle objective of this study was to test the novel vaccine on Tanzanian shorthorn zebu cross cattle (SZC).We did this firstly using a natural challenge field trial (Chapter Two) which demonstrated that immunisation with the atAlHV-1 vaccine was well tolerated and induced an oro-nasopharyngeal AlHV-1-specific and -neutralising antibody response. This resulted in an immunity in SZC cattle that was partially protective and reduced naturally transmitted infection by 56%. We also demonstrated that non-fatal infections occurred with a much higher frequency than previously thought. Because the calculated efficacy of the vaccine was less than that seen in British FH cattle we wanted to determine whether host factors, particular to SZC cattle, had impacted the outcomes of the field trial. To do this we repeated the 2008 direct viral challenge trial using SZC cattle (Chapter Four). During this trial we also investigated whether the recombinant bacterial flagellin monomer (FliC), when used as an adjuvant, might improve the vaccine’s efficacy. The findings from this trial indicated that direct challenge with pathogenic AlHV-1 is effective at inducing MCF in SZC cattle and that FliC is not an appropriate adjuvant for this vaccine. Furthermore, with less control group cattle dying of MCF than expected we speculate that SZC cattle may have a degree of resistance to MCF that affords them protection from infection and developing fatal disease. In Chapter Three we investigated aspects of the epidemiology of MCF, specifically whether wildebeest placenta, long implicated by Maasai cattle owners as a source of MCF, might play a role in viral transmission. Additionally, through comparative sequence analysis, at two specific genes (A9.5 and ORF50) of wild-type and atAlHV-1, we investigated whether the `C5000 strain, the source of which was taken from Africa more than 40 years ago, was appropriate for vaccine development. The detection of AlHV-1 virus in approximately 50% of placentae indicated that infection can occur in-utero and that this tissue might play a role in disease transmission. And, despite describing three new alleles of the A9.5 gene (supporting previous evidence that this gene is polymorphic and encodes a secretory protein with interleukin-4 as the major homologue), the observation that the most frequently detected haplotypes, in both wild-type and attenuated AlHV-1, were identical suggests that AlHV-1 has a slow molecular clock and that the attenuated strain was appropriate for vaccine development. In Chapter Five we present the first quantitative assessment of the annual MCF avoidance costs that Maasai pastoralists incur. In particular we estimated that as a result of MCF avoidance 64% of the total daily milk yield during the MCF season was not available to be used by the 81% of the family unit remaining at the permanent boma. This represents an upper-bound loss of approximately 8% of a household0s annual income. Despite these considerable losses we concluded that, given an incidence of fatal MCF in cattle living in wildebeest calving areas of 5% to 10%, if herd owners were to stop trying to avoid MCF by allowing their cattle to graze alongside wildebeest, any gains made through increased availability of milk, improved body condition and reduced energy demands would be offset by an increase in MCF-incidence. With the development of an effective vaccine, however, this alternative strategy might become optimal. The overall conclusion we draw therefore is that, despite the substantial costs incurred each year avoiding MCF, the partial protection afforded by the novel vaccine strategy is not sufficient to warrant a wholesale change in disease avoidance strategy. Nonetheless, even the partial protection provided by this vaccine could be of value to protect animals that cannot be moved, for example where some of the herd remain at the boma to provide milk or where land-use changes make traditional disease avoidance difficult. Furthermore, the vaccine may offer a feasible solution to some of the current land-use challenges and conflicts, providing a degree of protection to valuable livestock where avoidance strategies are not possible, but with less risk of precipitating the potentially damaging environmental consequences, such as overgrazing of highly nutritious seasonal pastures, that might result if herd owners decide they no longer need to avoid wildebeest.