2 resultados para one-step mechanism

em Glasgow Theses Service


Relevância:

90.00% 90.00%

Publicador:

Resumo:

One of the main unresolved questions in science is how non-living matter became alive in a process known as abiognesis, which aims to explain how from a primordial soup scenario containing simple molecules, by following a ``bottom up'' approach, complex biomolecules emerged forming the first living system, known as a protocell. A protocell is defined by the interplay of three sub-systems which are considered requirements for life: information molecules, metabolism, and compartmentalization. This thesis investigates the role of compartmentalization during the emergence of life, and how simple membrane aggregates could evolve into entities that were able to develop ``life-like'' behaviours, and in particular how such evolution could happen without the presence of information molecules. Our ultimate objective is to create an autonomous evolvable system, and in order tp do so we will try to engineer life following a ``top-down'' approach, where an initial platform capable of evolving chemistry will be constructed, but the chemistry being dependent on the robotic adjunct, and how then this platform can be de-constructed in iterative operations until it is fully disconnected from the evolvable system, the system then being inherently autonomous. The first project of this thesis describes how the initial platform was designed and built. The platform was based on the model of a standard liquid handling robot, with the main difference with respect to other similar robots being that we used a 3D-printer in order to prototype the robot and build its main equipment, like a liquid dispensing system, tool movement mechanism, and washing procedures. The robot was able to mix different components and create populations of droplets in a Petri dish filled with aqueous phase. The Petri dish was then observed by a camera, which analysed the behaviours described by the droplets and fed this information back to the robot. Using this loop, the robot was then able to implement an evolutionary algorithm, where populations of droplets were evolved towards defined life-like behaviours. The second project of this thesis aimed to remove as many mechanical parts as possible from the robot while keeping the evolvable chemistry intact. In order to do so, we encapsulated the functionalities of the previous liquid handling robot into a single monolithic 3D-printed device. This device was able to mix different components, generate populations of droplets in an aqueous phase, and was also equipped with a camera in order to analyse the experiments. Moreover, because the full fabrication process of the devices happened in a 3D-printer, we were also able to alter its experimental arena by adding different obstacles where to evolve the droplets, enabling us to study how environmental changes can shape evolution. By doing so, we were able to embody evolutionary characteristics into our device, removing constraints from the physical platform, and taking one step forward to a possible autonomous evolvable system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nanotechnology has revolutionised humanity's capability in building microscopic systems by manipulating materials on a molecular and atomic scale. Nan-osystems are becoming increasingly smaller and more complex from the chemical perspective which increases the demand for microscopic characterisation techniques. Among others, transmission electron microscopy (TEM) is an indispensable tool that is increasingly used to study the structures of nanosystems down to the molecular and atomic scale. However, despite the effectivity of this tool, it can only provide 2-dimensional projection (shadow) images of the 3D structure, leaving the 3-dimensional information hidden which can lead to incomplete or erroneous characterization. One very promising inspection method is Electron Tomography (ET), which is rapidly becoming an important tool to explore the 3D nano-world. ET provides (sub-)nanometer resolution in all three dimensions of the sample under investigation. However, the fidelity of the ET tomogram that is achieved by current ET reconstruction procedures remains a major challenge. This thesis addresses the assessment and advancement of electron tomographic methods to enable high-fidelity three-dimensional investigations. A quality assessment investigation was conducted to provide a quality quantitative analysis of the main established ET reconstruction algorithms and to study the influence of the experimental conditions on the quality of the reconstructed ET tomogram. Regular shaped nanoparticles were used as a ground-truth for this study. It is concluded that the fidelity of the post-reconstruction quantitative analysis and segmentation is limited, mainly by the fidelity of the reconstructed ET tomogram. This motivates the development of an improved tomographic reconstruction process. In this thesis, a novel ET method was proposed, named dictionary learning electron tomography (DLET). DLET is based on the recent mathematical theorem of compressed sensing (CS) which employs the sparsity of ET tomograms to enable accurate reconstruction from undersampled (S)TEM tilt series. DLET learns the sparsifying transform (dictionary) in an adaptive way and reconstructs the tomogram simultaneously from highly undersampled tilt series. In this method, the sparsity is applied on overlapping image patches favouring local structures. Furthermore, the dictionary is adapted to the specific tomogram instance, thereby favouring better sparsity and consequently higher quality reconstructions. The reconstruction algorithm is based on an alternating procedure that learns the sparsifying dictionary and employs it to remove artifacts and noise in one step, and then restores the tomogram data in the other step. Simulation and real ET experiments of several morphologies are performed with a variety of setups. Reconstruction results validate its efficiency in both noiseless and noisy cases and show that it yields an improved reconstruction quality with fast convergence. The proposed method enables the recovery of high-fidelity information without the need to worry about what sparsifying transform to select or whether the images used strictly follow the pre-conditions of a certain transform (e.g. strictly piecewise constant for Total Variation minimisation). This can also avoid artifacts that can be introduced by specific sparsifying transforms (e.g. the staircase artifacts the may result when using Total Variation minimisation). Moreover, this thesis shows how reliable elementally sensitive tomography using EELS is possible with the aid of both appropriate use of Dual electron energy loss spectroscopy (DualEELS) and the DLET compressed sensing algorithm to make the best use of the limited data volume and signal to noise inherent in core-loss electron energy loss spectroscopy (EELS) from nanoparticles of an industrially important material. Taken together, the results presented in this thesis demonstrates how high-fidelity ET reconstructions can be achieved using a compressed sensing approach.