2 resultados para numerical concrete design

em Glasgow Theses Service


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fire has been always a major concern for designers of steel and concrete structures. Designing fire-resistant structural elements is not an easy task due to several limitations such as the lack of fire-resistant construction materials. Concrete reinforcement cover and external insulation are the most commonly adopted systems to protect concrete and steel from overheating, while spalling of concrete is minimised by using HPFRC instead of standard concrete. Although these methodologies work very well for low rise concrete structures, this is not the case for high-rise and inaccessible buildings where fire loading is much longer. Fire can permanently damage structures that cost a lot of money. This is unsafe and can lead to loss of life. In this research, the author proposes a new type of main reinforcement for concrete structures which can provide better fire-resistance than steel or FRP re-bars. This consists of continuous braided fibre rope, generally made from fire-resistant materials such as carbon or glass fibre. These fibres have excellent tensile strengths, sometimes in excess of ten times greater than steel. In addition to fire-resistance, these ropes can produce lighter and corrosive resistant structures. Avoiding the use of expensive resin binders, fibres are easily bound together using braiding techniques, ensuring that tensile stress is evenly distributed throughout the reinforcement. In order to consider braided ropes as a form of reinforcement it is first necessary to establish the mechanical performance at room temperature and investigate the pull-out resistance for both unribbed and ribbed ropes. Ribbing of ropes was achieved by braiding the rope over a series of glass beads. Adhesion between the rope and concrete was drastically improved due to ribbing, and further improved by pre-stressing ropes and reducing the slacked fibres. Two types of material have been considered for the ropes: carbon and aramid. An implicit finite element approach is proposed to model braided fibres using Total Lagrangian formulation, based on the theory of small strains and large rotations. Modelling tows and strands as elastic transversely isotropic materials was a good assumption when stiff and brittle fibres such as carbon and glass fibres are considered. The rope-to-concrete and strand-to-strand bond interaction/adhesion was numerically simulated using newly proposed hierarchical higher order interface elements. Elastic and linear damage cohesive models were used effectively to simulate non-penetrative 'free' sliding interaction between strands, and the adhesion between ropes and concrete respectively. Numerical simulation showed similar de-bonding features when compared with experimental pull-out results of braided ribbed rope reinforced concrete.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this thesis is to review and augment the theory and methods of optimal experimental design. In Chapter I the scene is set by considering the possible aims of an experimenter prior to an experiment, the statistical methods one might use to achieve those aims and how experimental design might aid this procedure. It is indicated that, given a criterion for design, a priori optimal design will only be possible in certain instances and, otherwise, some form of sequential procedure would seem to be indicated. In Chapter 2 an exact experimental design problem is formulated mathematically and is compared with its continuous analogue. Motivation is provided for the solution of this continuous problem, and the remainder of the chapter concerns this problem. A necessary and sufficient condition for optimality of a design measure is given. Problems which might arise in testing this condition are discussed, in particular with respect to possible non-differentiability of the criterion function at the design being tested. Several examples are given of optimal designs which may be found analytically and which illustrate the points discussed earlier in the chapter. In Chapter 3 numerical methods of solution of the continuous optimal design problem are reviewed. A new algorithm is presented with illustrations of how it should be used in practice. It is shown that, for reasonably large sample size, continuously optimal designs may be approximated to well by an exact design. In situations where this is not satisfactory algorithms for improvement of this design are reviewed. Chapter 4 consists of a discussion of sequentially designed experiments, with regard to both the philosophies underlying, and the application of the methods of, statistical inference. In Chapter 5 we criticise constructively previous suggestions for fully sequential design procedures. Alternative suggestions are made along with conjectures as to how these might improve performance. Chapter 6 presents a simulation study, the aim of which is to investigate the conjectures of Chapter 5. The results of this study provide empirical support for these conjectures. In Chapter 7 examples are analysed. These suggest aids to sequential experimentation by means of reduction of the dimension of the design space and the possibility of experimenting semi-sequentially. Further examples are considered which stress the importance of the use of prior information in situations of this type. Finally we consider the design of experiments when semi-sequential experimentation is mandatory because of the necessity of taking batches of observations at the same time. In Chapter 8 we look at some of the assumptions which have been made and indicate what may go wrong where these assumptions no longer hold.