5 resultados para non-functional requirment

em Glasgow Theses Service


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current practice for analysing functional neuroimaging data is to average the brain signals recorded at multiple sensors or channels on the scalp over time across hundreds of trials or replicates to eliminate noise and enhance the underlying signal of interest. These studies recording brain signals non-invasively using functional neuroimaging techniques such as electroencephalography (EEG) and magnetoencephalography (MEG) generate complex, high dimensional and noisy data for many subjects at a number of replicates. Single replicate (or single trial) analysis of neuroimaging data have gained focus as they are advantageous to study the features of the signals at each replicate without averaging out important features in the data that the current methods employ. The research here is conducted to systematically develop flexible regression mixed models for single trial analysis of specific brain activities using examples from EEG and MEG to illustrate the models. This thesis follows three specific themes: i) artefact correction to estimate the `brain' signal which is of interest, ii) characterisation of the signals to reduce their dimensions, and iii) model fitting for single trials after accounting for variations between subjects and within subjects (between replicates). The models are developed to establish evidence of two specific neurological phenomena - entrainment of brain signals to an $\alpha$ band of frequencies (8-12Hz) and dipolar brain activation in the same $\alpha$ frequency band in an EEG experiment and a MEG study, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The social landscape is filled with an intricate web of species-specific desired objects and course of actions. Humans are highly social animals and, as they navigate this landscape, they need to produce adapted decision-making behaviour. Traditionally social and non-social neural mechanisms affecting choice have been investigated using different approaches. Recently, in an effort to unite these findings, two main theories have been proposed to explain how the brain might encode social and non-social motivational decision-making: the extended common currency and the social valuation specific schema (Ruff & Fehr 2014). One way to test these theories is to directly compare neural activity related to social and non-social decision outcomes within the same experimental setting. Here we address this issue by focusing on the neural substrates of social and non-social forms of uncertainty. Using functional magnetic resonance imaging (fMRI) we directly compared the neural representations of reward and risk prediction and errors (RePE and RiPE) in social and non- social situations using gambling games. We used a trust betting game to vary uncertainty along a social dimension (trustworthiness), and a card game (Preuschoff et al. 2006) to vary uncertainty along a non-social dimension (pure risk). The trust game was designed to maintain the same structure of the card game. In a first study, we exposed a divide between subcortical and cortical regions when comparing the way these regions process social and non-social forms of uncertainty during outcome anticipation. Activity in subcortical regions reflected social and non-social RePE, while activity in cortical regions correlated with social RePE and non-social RiPE. The second study focused on outcome delivery and integrated the concept of RiPE in non-social settings with that of fairness and monetary utility maximisation in social settings. In particular these results corroborate recent models of anterior insula function (Singer et al. 2009; Seth 2013), and expose a possible neural mechanism that weights fairness and uncertainty but not monetary utility. The third study focused on functionally defined regions of the early visual cortex (V1) showing how activity in these areas, traditionally considered only visual, might reflect motivational prediction errors in addition to known perceptual prediction mechanisms (den Ouden et al 2012). On the whole, while our results do not support unilaterally one or the other theory modeling the underlying neural dynamics of social and non-social forms of decision making, they provide a working framework where both general mechanisms might coexist.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Short chain fatty acids (SCFA), including propionate, are produced by the bacterial fermentation of carbohydrates in the colon. Propionate has many potential roles in health, including inhibiting cholesterol synthesis, de novo lipogenesis and increasing satiety. The profile of SCFA produced is determined by both the substrate available and the bacteria present and may be influenced by environmental conditions within the lumen of the colon. Whilst it may be beneficial to increase colonic propionate production, dietary strategies to achieve this are unproven. Adding propionate to food leads to poorer organoleptic properties, and oral propionate is absorbed in the small intestine. The optimum way to selectively increase colonic propionate would be to select fermentable carbohydrates that selectively promote propionate production. To date, few studies have undertaken a systematic assessment of the factors leading to increased colonic propionate production making the selection of propiogenic carbohydrates challenging. The aim of this thesis was to identify the best carbohydrates for selectively increasing propionate production, and to explore the factors which control propionate production. This work started with a systematic review of the literature for evidence of candidate carbohydrates, which led to a screen of ‘propiogenic’ substrates using in vitro batch fermentations and mechanistic analysis of the impact of pH, bond linkage and orientation using a range of sugars, polysaccharides and fibre sources. A new unit for SCFA production was developed to allow comparison of results from in vitro studies encompassing a range different methodologies found in the literature. The systematic review found that rhamnose yielded the highest rate and proportion of propionate production whereas, for polysaccharides, β-glucan ranked highest for rate and guar gum ranked highest for molar production, but this was not replicated across all studies. Thus, no single NDC was established as highly propiogenic. Some substrates appeared more propiogenic than others and when these were screened in vitro. Laminarin, and other β-glucans ranked highest for propionate production. Legume fibre and mycoprotein fibre were also propiogenic. A full complement of glucose disaccharides were tested to examine the role glycosidic bond orientation and position on propionate production. Of the glucose disaccharides tested, β(1-4) bonding was associated with increased proportion of propionate and α(1-1) and β(1-4) increased the rate and proportion of butyrate production. In conclusion, it appears that for fibre to affect satiety, high intakes of fibre are needed, and which a major mechanism is thought to occur via propionate. Within this thesis it was identified that rather than selecting specific fibres, increasing overall intakes of highly fermentable carbohydrates is as effective at increasing propionate production. Selecting carbohydrates with beta-bonding, particularly laminarin and other β(1-4) fermentable carbohydrates leads to marginal increases in propionate production. Compared with targeted delivery of propionate to the colon, fermentable carbohydrates examined in this thesis have lesser and variable effects on propionate production. A more complete understanding of the impact of bond configurations in polysaccharides, rather than disaccharides, may help selection or design of dietary carbohydrates which selectively promote colonic propionate production substrates for inclusion in functional foods. Overall this study has concluded that few substrates are selectively propiogenic and the evidence suggests that similar changes in propionate production may be achieved by modest changes in dietary fibre intake

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stem cell therapy for ischaemic stroke is an emerging field in light of an increasing number of patients surviving with permanent disability. Several allogenic and autologous cells types are now in clinical trials with preliminary evidence of safety. Some clinical studies have reported functional improvements in some patients. After initial safety evaluation in a Phase 1 study, the conditionally immortalised human neural stem cell line CTX0E03 is currently in a Phase 2 clinical trial (PISCES-II). Previous pre-clinical studies conducted by ReNeuron Ltd, showed evidence of functional recovery in the Bilateral Asymmetry test up to 6 weeks following transplantation into rodent brain, 4 weeks after middle cerebral artery occlusion. Resting-state fMRI is increasingly used to investigate brain function in health and disease, and may also act as a predictor of recovery due to known network changes in the post-stroke recovery period. Resting-state methods have also been applied to non-human primates and rodents which have been found to have analogous resting-state networks to humans. The sensorimotor resting-state network of rodents is impaired following experimental focal ischaemia of the middle cerebral artery territory. However, the effects of stem cell implantation on brain functional networks has not previously been investigated. Prior studies assessed sensorimotor function following sub-cortical implantation of CTX0E03 cells in the rodent post-stroke brain but with no MRI assessments of functional improvements. This thesis presents research on the effect of sub-cortical implantation of CTX0E03 cells on the resting- state sensorimotor network and sensorimotor deficits in the rat following experimental stroke, using protocols based on previous work with this cell line. The work in this thesis identified functional tests of appropriate sensitivity for long-term dysfunction suitable for this laboratory, and investigated non-invasive monitoring of physiological variables required to optimize BOLD signal stability within a high-field MRI scanner. Following experimental stroke, rats demonstrated expected sensorimotor dysfunction and changes in the resting-state sensorimotor network. CTX0E03 cells did not improve post-stroke functional outcome (compared to previous studies) and with no changes in resting-state sensorimotor network activity. However, in control animals, we observed changes in functional networks due to the stereotaxic procedure. This illustrates the sensitivity of resting-state fMRI to stereotaxic procedures. We hypothesise that the damage caused by cell or vehicle implantation may have prevented functional and network recovery which has not been previously identified due to the application of different functional tests. The findings in this thesis represent one of few pre-clinical studies in resting-state fMRI network changes post-stroke and the only to date applying this technique to evaluate functional outcomes following a clinically applicable human neural stem cell treatment for ischaemic stroke. It was found that injury caused by stereotaxic injection should be taken into account when assessing the effectiveness of treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A prospective randomised controlled clinical trial of treatment decisions informed by invasive functional testing of coronary artery disease severity compared with standard angiography-guided management was implemented in 350 patients with a recent non-ST elevation myocardial infarction (NSTEMI) admitted to 6 hospitals in the National Health Service. The main aims of this study were to examine the utility of both invasive fractional flow reserve (FFR) and non-invasive cardiac magnetic resonance imaging (MRI) amongst patients with a recent diagnosis of NSTEMI. In summary, the findings of this thesis are: (1) the use of FFR combined with intravenous adenosine was feasible and safe amongst patients with NSTEMI and has clinical utility; (2) there was discordance between the visual, angiographic estimation of lesion significance and FFR; (3). The use of FFR led to changes in treatment strategy and an increase in prescription of medical therapy in the short term compared with an angiographically guided strategy; (4) in the incidence of major adverse cardiac events (MACE) at 12 months follow up was similar in the two groups. Cardiac MRI was used in a subset of patients enrolled in two hospitals in the West of Scotland. T1 and T2 mapping methods were used to delineate territories of acute myocardial injury. T1 and T2 mapping were superior when compared with conventional T2-weighted dark blood imaging for estimation of the ischaemic area-at-risk (AAR) with less artifact in NSTEMI. There was poor correlation between the angiographic AAR and MRI methods of AAR estimation in patients with NSTEMI. FFR had a high accuracy at predicting inducible perfusion defects demonstrated on stress perfusion MRI. This thesis describes the largest randomized trial published to date specifically looking at the clinical utility of FFR in the NSTEMI population. We have provided evidence of the diagnostic and clinical utility of FFR in this group of patients and provide evidence to inform larger studies. This thesis also describes the largest ever MRI cohort, including with myocardial stress perfusion assessments, specifically looking at the NSTEMI population. We have demonstrated the diagnostic accuracy of FFR to predict reversible ischaemia as referenced to a non-invasive gold standard with MRI. This thesis has also shown the futility of using dark blood oedema imaging amongst all comer NSTEMI patients when compared to novel T1 and T2 mapping methods.