2 resultados para new respiratory virus

em Glasgow Theses Service


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dengue fever is one of the most important mosquito-borne diseases worldwide and is caused by infection with dengue virus (DENV). The disease is endemic in tropical and sub-tropical regions and has increased remarkably in the last few decades. At present, there is no antiviral or approved vaccine against the virus. Treatment of dengue patients is usually supportive, through oral or intravenous rehydration, or by blood transfusion for more severe dengue cases. Infection of DENV in humans and mosquitoes involves a complex interplay between the virus and host factors. This results in regulation of numerous intracellular processes, such as signal transduction and gene transcription which leads to progression of disease. To understand the mechanisms underlying the disease, the study of virus and host factors is therefore essential and could lead to the identification of human proteins modulating an essential step in the virus life cycle. Knowledge of these human proteins could lead to the discovery of potential new drug targets and disease control strategies in the future. Recent advances of high throughput screening technologies have provided researchers with molecular tools to carry out investigations on a large scale. Several studies have focused on determination of the host factors during DENV infection in human and mosquito cells. For instance, a genome-wide RNA interference (RNAi) screen has identified host factors that potentially play an important role in both DENV and West Nile virus replication (Krishnan et al. 2008). In the present study, a high-throughput yeast two-hybrid screen has been utilised in order to identify human factors interacting with DENV non-structural proteins. From the screen, 94 potential human interactors were identified. These include proteins involved in immune signalling regulation, potassium voltage-gated channels, transcriptional regulators, protein transporters and endoplasmic reticulum-associated proteins. Validation of fifteen of these human interactions revealed twelve of them strongly interacted with DENV proteins. Two proteins of particular interest were selected for further investigations of functional biological systems at the molecular level. These proteins, including a nuclear-associated protein BANP and a voltage-gated potassium channel Kv1.3, both have been identified through interaction with the DENV NS2A. BANP is known to be involved in NF-kB immune signalling pathway, whereas, Kv1.3 is known to play an important role in regulating passive flow of potassium ions upon changes in the cell transmembrane potential. This study also initiated a construction of an Aedes aegypti cDNA library for use with DENV proteins in Y2H screen. However, several issues were encountered during the study which made the library unsuitable for protein interaction analysis. In parallel, innate immune signalling was also optimised for downstream analysis. Overall, the work presented in this thesis, in particular the Y2H screen provides a number of human factors potentially targeted by DENV during infection. Nonetheless, more work is required to be done in order to validate these proteins and determine their functional properties, as well as testing them with infectious DENV to establish a biological significance. In the long term, data from this study will be useful for investigating potential human factors for development of antiviral strategies against dengue.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding how virus strains offer protection against closely related emerging strains is vital for creating effective vaccines. For many viruses, including Foot-and-Mouth Disease Virus (FMDV) and the Influenza virus where multiple serotypes often co-circulate, in vitro testing of large numbers of vaccines can be infeasible. Therefore the development of an in silico predictor of cross-protection between strains is important to help optimise vaccine choice. Vaccines will offer cross-protection against closely related strains, but not against those that are antigenically distinct. To be able to predict cross-protection we must understand the antigenic variability within a virus serotype, distinct lineages of a virus, and identify the antigenic residues and evolutionary changes that cause the variability. In this thesis we present a family of sparse hierarchical Bayesian models for detecting relevant antigenic sites in virus evolution (SABRE), as well as an extended version of the method, the extended SABRE (eSABRE) method, which better takes into account the data collection process. The SABRE methods are a family of sparse Bayesian hierarchical models that use spike and slab priors to identify sites in the viral protein which are important for the neutralisation of the virus. In this thesis we demonstrate how the SABRE methods can be used to identify antigenic residues within different serotypes and show how the SABRE method outperforms established methods, mixed-effects models based on forward variable selection or l1 regularisation, on both synthetic and viral datasets. In addition we also test a number of different versions of the SABRE method, compare conjugate and semi-conjugate prior specifications and an alternative to the spike and slab prior; the binary mask model. We also propose novel proposal mechanisms for the Markov chain Monte Carlo (MCMC) simulations, which improve mixing and convergence over that of the established component-wise Gibbs sampler. The SABRE method is then applied to datasets from FMDV and the Influenza virus in order to identify a number of known antigenic residue and to provide hypotheses of other potentially antigenic residues. We also demonstrate how the SABRE methods can be used to create accurate predictions of the important evolutionary changes of the FMDV serotypes. In this thesis we provide an extended version of the SABRE method, the eSABRE method, based on a latent variable model. The eSABRE method takes further into account the structure of the datasets for FMDV and the Influenza virus through the latent variable model and gives an improvement in the modelling of the error. We show how the eSABRE method outperforms the SABRE methods in simulation studies and propose a new information criterion for selecting the random effects factors that should be included in the eSABRE method; block integrated Widely Applicable Information Criterion (biWAIC). We demonstrate how biWAIC performs equally to two other methods for selecting the random effects factors and combine it with the eSABRE method to apply it to two large Influenza datasets. Inference in these large datasets is computationally infeasible with the SABRE methods, but as a result of the improved structure of the likelihood, we are able to show how the eSABRE method offers a computational improvement, leading it to be used on these datasets. The results of the eSABRE method show that we can use the method in a fully automatic manner to identify a large number of antigenic residues on a variety of the antigenic sites of two Influenza serotypes, as well as making predictions of a number of nearby sites that may also be antigenic and are worthy of further experiment investigation.