2 resultados para molecular and cellular biology

em Glasgow Theses Service


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phosphodiesterase 4 (PDE4) family are cAMP specific phosphodiesterases that play an important role in the inflammatory response and is the major PDE type found in inflammatory cells. A significant number of PDE4 specific inhibitors have been developed and are currently being investigated for use as therapeutic agents. Apremilast, a small molecule inhibitor of PDE 4 is in development for chronic inflammatory disorders and has shown promise for the treatment of psoriasis, psoriatic arthritis as well as other inflammatory diseases. It has been found to be safe and well tolerated in humans and in March 2014 it was approved by the US food and drug administration for the treatment of adult patients with active psoriatic arthritis. The only other PDE4 inhibitor on the market is Roflumilast and it is used for treatment of respiratory disease. Roflumilast is approved in the EU for the treatment of COPD and was recently approved in the US for treatment to reduce the risk of COPD exacerbations. Roflumilast is also a selective PDE4 inhibitor, administered as an oral tablet once daily, and is thought to act by increasing cAMP within lung cells. As both (Apremilast and Roflumilast) compounds selectively inhibit PDE4 but are targeted at different diseases, there is a need for a clear understanding of their mechanism of action (MOA). Differences and similarity of MOA should be defined for the purposes of labelling, for communication to the scientific community, physicians, and patients, and for an extension of utility to other diseases and therapeutic areas. In order to obtain a complete comparative picture of the MOA of both inhibitors, additional molecular and cellular biology studies are required to more fully elucidate the signalling mediators downstream of PDE4 inhibition which result in alterations in pro- and anti-inflammatory gene expression. My studies were conducted to directly compare Apremilast with Roflumilast, in order to substantiate the differences observed in the molecular and cellular effects of these compounds, and to search for other possible differentiating effects. Therefore the main aim of this thesis was to utilise cutting-edge biochemical techniques to discover whether Apremilast and Roflumilast work with different modes of action. In the first part of my thesis I used novel genetically encoded FRET based cAMP sensors targeted to different intracellular compartments, in order to monitor cAMP levels within specific microdomains of cells as a consequence of challenge with Apremilast and Roflumilast, which revealed that Apremilast and Roflumilast do regulate different pools of cAMP in cells. In the second part of my thesis I focussed on assessing whether Apremilast and Roflumilast cause differential effects on the PKA phosphorylation state of proteins in cells. I used various biochemical techniques (Western blotting, Substrate kinase arrays and Reverse Phase Protein array and found that Apremilast and Roflumilast do lead to differential PKA substrate phosphorylation. For example I found that Apremilast increases the phosphorylation of Ribosomal Protein S6 at Ser240/244 and Fyn Y530 in the S6 Ribosomal pathway of Rheumatoid Arthritis Synovial fibroblast and HEK293 cells, whereas Roflumilast does not. This data suggests that Apremilast has distinct biological effects from that of Roflumilast and could represent a new therapeutic role for Apremilast in other diseases. In the final part of my thesis, Phage display technology was employed in order to identify any novel binding motifs that associate with PDE4 and to identify sequences that were differentially regulated by the inhibitors in an attempt to find binding motifs that may exist in previously characterised signalling proteins. Petide array technology was then used to confirm binding of specific peptide sequences or motifs. Results showed that Apremilast and Roflumilast can either enhance or decrease the binding of PDE4A4 to specific peptide sequences or motifs that are found in a variety of proteins in the human proteome, most interestingly Ubiquitin-related proteins. The data from this chapter is preliminary but may be used in the discovery of novel binding partners for PDE4 or to provide a new role for PDE inhibition in disease. Therefore the work in this thesis provides a unique snapshot of the complexity of the cAMP signalling system and is the first to directly compare action of the two approved PDE4 inhibitors in a detailed way.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Orthobunyaviruses are the largest genus within the Bunyaviridae family, with over 170 named viruses classified into 18 serogroups (Elliott and Blakqori, 2001; Plyusnin et al., 2012). Orthobunyaviruses are transmitted by arthropods and have a tripartite negative sense RNA genome, which encodes 4 structural proteins and 2 non-structural proteins. The non-structural protein NSs is the primary virulence factor of orthobunyaviruses and potent antagonist of the type I interferon (IFN) response. However, sequencing studies have identified pathogenic viruses that lack the NSs protein (Mohamed et al., 2009; Gauci et al., 2010). The work presented in this thesis describes the molecular and biological characterisation of divergent orthobunyaviruses. Data on plaque morphology, growth kinetics, protein profiles, sensitivity to IFN and activation of the type I IFN system are presented for viruses in the Anopheles A, Anopheles B, Capim, Gamboa, Guama, Minatitlan, Nyando, Tete and Turlock serogroups. These are complemented with complete genome sequencing and phylogenetic analysis. Low activation of IFN by Tete serogroup viruses, which naturally lack an NSs protein, was also further investigated by the development of a reverse genetics system for Batama virus (BMAV). Recombinant viruses with mutations in the virus nucleocapsid protein amino terminus showed higher activation of type I IFN in vitro and data suggests that low levels of IFN are due to lower activation rather than active antagonism. The anti-orthobunyavirus activity of IFN-stimulated genes IFI44, IFITMs and human and ovine BST2 were also studied, revealing that activity varies not only within the orthobunyavirus genus and virus serogroups but also within virus species. Furthermore, there was evidence of active antagonism of the type I IFN response and ISGs by non-NSs viruses. In summary, the results show that pathogenicity in man and antagonism of the type I IFN response in vitro cannot be predicted by the presence, or absence, of an NSs ORF. They also highlight problems in orthobunyavirus classification with discordance between classical antigen based data and phylogenetic analysis.