2 resultados para mass measurement

em Glasgow Theses Service


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Body composition is affected by diseases, and affects responses to medical treatments, dosage of medicines, etc., while an abnormal body composition contributes to the causation of many chronic diseases. While we have reliable biochemical tests for certain nutritional parameters of body composition, such as iron or iodine status, and we have harnessed nuclear physics to estimate the body’s content of trace elements, the very basic quantification of body fat content and muscle mass remains highly problematic. Both body fat and muscle mass are vitally important, as they have opposing influences on chronic disease, but they have seldom been estimated as part of population health surveillance. Instead, most national surveys have merely reported BMI and waist, or sometimes the waist/hip ratio; these indices are convenient but do not have any specific biological meaning. Anthropometry offers a practical and inexpensive method for muscle and fat estimation in clinical and epidemiological settings; however, its use is imperfect due to many limitations, such as a shortage of reference data, misuse of terminology, unclear assumptions, and the absence of properly validated anthropometric equations. To date, anthropometric methods are not sensitive enough to detect muscle and fat loss. Aims: The aim of this thesis is to estimate Adipose/fat and muscle mass in health disease and during weight loss through; 1. evaluating and critiquing the literature, to identify the best-published prediction equations for adipose/fat and muscle mass estimation; 2. to derive and validate adipose tissue and muscle mass prediction equations; and 3.to evaluate the prediction equations along with anthropometric indices and the best equations retrieved from the literature in health, metabolic illness and during weight loss. Methods: a Systematic review using Cochrane Review method was used for reviewing muscle mass estimation papers that used MRI as the reference method. Fat mass estimation papers were critically reviewed. Mixed ethnic, age and body mass data that underwent whole body magnetic resonance imaging to quantify adipose tissue and muscle mass (dependent variable) and anthropometry (independent variable) were used in the derivation/validation analysis. Multiple regression and Bland-Altman plot were applied to evaluate the prediction equations. To determine how well the equations identify metabolic illness, English and Scottish health surveys were studied. Statistical analysis using multiple regression and binary logistic regression were applied to assess model fit and associations. Also, populations were divided into quintiles and relative risk was analysed. Finally, the prediction equations were evaluated by applying them to a pilot study of 10 subjects who underwent whole-body MRI, anthropometric measurements and muscle strength before and after weight loss to determine how well the equations identify adipose/fat mass and muscle mass change. Results: The estimation of fat mass has serious problems. Despite advances in technology and science, prediction equations for the estimation of fat mass depend on limited historical reference data and remain dependent upon assumptions that have not yet been properly validated for different population groups. Muscle mass does not have the same conceptual problems; however, its measurement is still problematic and reference data are scarce. The derivation and validation analysis in this thesis was satisfactory, compared to prediction equations in the literature they were similar or even better. Applying the prediction equations in metabolic illness and during weight loss presented an understanding on how well the equations identify metabolic illness showing significant associations with diabetes, hypertension, HbA1c and blood pressure. And moderate to high correlations with MRI-measured adipose tissue and muscle mass before and after weight loss. Conclusion: Adipose tissue mass and to an extent muscle mass can now be estimated for many purposes as population or groups means. However, these equations must not be used for assessing fatness and categorising individuals. Further exploration in different populations and health surveys would be valuable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fluvial sediment transport is controlled by hydraulics, sediment properties and arrangement, and flow history across a range of time scales. This physical complexity has led to ambiguous definition of the reference frame (Lagrangian or Eulerian) in which sediment transport is analysed. A general Eulerian-Lagrangian approach accounts for inertial characteristics of particles in a Lagrangian (particle fixed) frame, and for the hydrodynamics in an independent Eulerian frame. The necessary Eulerian-Lagrangian transformations are simplified under the assumption of an ideal Inertial Measurement Unit (IMU), rigidly attached at the centre of the mass of a sediment particle. Real, commercially available IMU sensors can provide high frequency data on accelerations and angular velocities (hence forces and energy) experienced by grains during entrainment and motion, if adequately customized. IMUs are subjected to significant error accu- mulation but they can be used for statistical parametrisation of an Eulerian-Lagrangian model, for coarse sediment particles and over the temporal scale of individual entrainment events. In this thesis an Eulerian-Lagrangian model is introduced and evaluated experimentally. Absolute inertial accelerations were recorded at a 4 Hz frequency from a spherical instrumented particle (111 mm diameter and 2383 kg/m3 density) in a series of entrainment threshold experiments on a fixed idealised bed. The grain-top inertial acceleration entrainment threshold was approximated at 44 and 51 mg for slopes 0.026 and 0.037 respectively. The saddle inertial acceleration entrainment threshold was at 32 and 25 mg for slopes 0.044 and 0.057 respectively. For the evaluation of the complete Eulerian-Lagrangian model two prototype sensors are presented: an idealised (spherical) with a diameter of 90 mm and an ellipsoidal with axes 100, 70 and 30 mm. Both are instrumented with a complete IMU, capable of sampling 3D inertial accelerations and 3D angular velocities at 50 Hz. After signal analysis, the results can be used to parametrize sediment movement but they do not contain positional information. The two sensors (spherical and ellipsoidal) were tested in a series of entrainment experiments, similar to the evaluation of the 111 mm prototype, for a slope of 0.02. The spherical sensor entrained at discharges of 24.8 ± 1.8 l/s while the same threshold for the ellipsoidal sensor was 45.2 ± 2.2 l/s. Kinetic energy calculations were used to quantify the particle-bed energy exchange under fluvial (discharge at 30 l/s) and non-fluvial conditions. All the experiments suggest that the effect of the inertial characteristics of coarse sediments on their motion is comparable to the effect hydrodynamic forces. The coupling of IMU sensors with advanced telemetric systems can lead to the tracking of Lagrangian particle trajectories, at a frequency and accuracy that will permit the testing of diffusion/dispersion models across the range of particle diameters.