2 resultados para maintaining and augmenting Plant design
em Glasgow Theses Service
Resumo:
The design demands on water and sanitation engineers are rapidly changing. The global population is set to rise from 7 billion to 10 billion by 2083. Urbanisation in developing regions is increasing at such a rate that a predicted 56% of the global population will live in an urban setting by 2025. Compounding these problems, the global water and energy crises are impacting the Global North and South alike. High-rate anaerobic digestion offers a low-cost, low-energy treatment alternative to the energy intensive aerobic technologies used today. Widespread implementation however is hindered by the lack of capacity to engineer high-rate anaerobic digestion for the treatment of complex wastes such as sewage. This thesis utilises the Expanded Granular Sludge Bed bioreactor (EGSB) as a model system in which to study the ecology, physiology and performance of high-rate anaerobic digestion of complex wastes. The impacts of a range of engineered parameters including reactor geometry, wastewater type, operating temperature and organic loading rate are systematically investigated using lab-scale EGSB bioreactors. Next generation sequencing of 16S amplicons is utilised as a means of monitoring microbial ecology. Microbial community physiology is monitored by means of specific methanogenic activity testing and a range of physical and chemical methods are applied to assess reactor performance. Finally, the limit state approach is trialled as a method for testing the EGSB and is proposed as a standard method for biotechnology testing enabling improved process control at full-scale. The arising data is assessed both qualitatively and quantitatively. Lab-scale reactor design is demonstrated to significantly influence the spatial distribution of the underlying ecology and community physiology in lab-scale reactors, a vital finding for both researchers and full-scale plant operators responsible for monitoring EGSB reactors. Recurrent trends in the data indicate that hydrogenotrophic methanogenesis dominates in high-rate anaerobic digestion at both full- and lab-scale when subject to engineered or operational stresses including low-temperature and variable feeding regimes. This is of relevance for those seeking to define new directions in fundamental understanding of syntrophic and competitive relations in methanogenic communities and also to design engineers in determining operating parameters for full-scale digesters. The adoption of the limit state approach enabled identification of biological indicators providing early warning of failure under high-solids loading, a vital insight for those currently working empirically towards the development of new biotechnologies at lab-scale.
Resumo:
The aim of this thesis is to review and augment the theory and methods of optimal experimental design. In Chapter I the scene is set by considering the possible aims of an experimenter prior to an experiment, the statistical methods one might use to achieve those aims and how experimental design might aid this procedure. It is indicated that, given a criterion for design, a priori optimal design will only be possible in certain instances and, otherwise, some form of sequential procedure would seem to be indicated. In Chapter 2 an exact experimental design problem is formulated mathematically and is compared with its continuous analogue. Motivation is provided for the solution of this continuous problem, and the remainder of the chapter concerns this problem. A necessary and sufficient condition for optimality of a design measure is given. Problems which might arise in testing this condition are discussed, in particular with respect to possible non-differentiability of the criterion function at the design being tested. Several examples are given of optimal designs which may be found analytically and which illustrate the points discussed earlier in the chapter. In Chapter 3 numerical methods of solution of the continuous optimal design problem are reviewed. A new algorithm is presented with illustrations of how it should be used in practice. It is shown that, for reasonably large sample size, continuously optimal designs may be approximated to well by an exact design. In situations where this is not satisfactory algorithms for improvement of this design are reviewed. Chapter 4 consists of a discussion of sequentially designed experiments, with regard to both the philosophies underlying, and the application of the methods of, statistical inference. In Chapter 5 we criticise constructively previous suggestions for fully sequential design procedures. Alternative suggestions are made along with conjectures as to how these might improve performance. Chapter 6 presents a simulation study, the aim of which is to investigate the conjectures of Chapter 5. The results of this study provide empirical support for these conjectures. In Chapter 7 examples are analysed. These suggest aids to sequential experimentation by means of reduction of the dimension of the design space and the possibility of experimenting semi-sequentially. Further examples are considered which stress the importance of the use of prior information in situations of this type. Finally we consider the design of experiments when semi-sequential experimentation is mandatory because of the necessity of taking batches of observations at the same time. In Chapter 8 we look at some of the assumptions which have been made and indicate what may go wrong where these assumptions no longer hold.