4 resultados para host-pathogen interaction

em Glasgow Theses Service


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Although diarrhoea caused by Cryptosporidium is prevalent in livestock species throughout the world relatively little is known about the species and subtypes of Cryptosporidium found in cattle on Scottish farms. In particular, little is known about the shedding profiles (age when calves become infected and duration of shedding) of the different species found in cattle and how calves become infected. There are several theories about how neonatal calves first become infected with the parasite but the role which adult cattle play in the transmission of the parasite has not been fully addressed. It was previously thought that adult cattle did not become infected with the same species of Cryptosporidium which causes disease in the young calves. Some studies have shown that this may not be true and with the advance of new techniques to discriminate species this is an area which should be revisited. In addition, it is known that it is possible for humans to become infected with Cryptosporidium and show clinical disease early in life and then again later in adulthood. In livestock however, diarrhoea caused by the parasite is generally only seen in neonatal livestock while older animals tend to be asymptomatic. It is not known if this resistance to clinical disease at an older age is due to changes in the host with an increase in age or if prior infection “immunises” the animal and provides protection against re-infection. It is also not known if infection with one isolate of C. parvum will provide protection against infection with another or if the protection formed is species/isolate specific. The main aims of this thesis were to: determine the species and subtypes of Cryptosporidium found in calves on a study farm over a one year period from birth; assess the role which adult cattle play in the transmission of the parasite to newborn calves; develop new typing tools to enable the rapid and easy differentiation of Cryptosporidium species found in cattle and to examine the host-pathogen interactions in animals given serial experimental challenges with distinct Cryptosporidium parvum isolates to determine if the resistance seen in older animals on farms is due to an increase in age or as a result of prior infection. iii A variety of different approaches were taken to achieve these aims. Longitudinal experiments carried out on a study farm revealed that in calves <9 weeks of age the most common species of Cryptosporidium is C. parvum and that all calves in the group became infected with Cryptosporidium within the first two weeks of life. Sample collection from the same animals later in life (at 6 months of age) showed that contrary to most previous studies the most common species detected at in this age group was also C. parvum although, interestingly, the subtype which the calves were shedding was not the same subtype that they were shedding previously. The longitudinal study which investigated the role of adult cattle in the transmission of Cryptosporidium also yielded some interesting results. It was found that most of the adult cattle on this farm were shedding Cryptosporidium albeit intermittently. Speciation of the positive samples revealed that, on this farm, the most predominant species of Cryptosporidium in adult cattle was also C. parvum. This is very unusual as most previous studies have not found this level of infection in older cattle and C. parvum is not usually found in this age group. A number of different subtypes were found in adult cattle and some animals shed more than one subtype over the course of the study. This contradicts prior findings which demonstrated that only one subtype is found on a single farm. The experimental infection trial involving infection of young (<1 week old) and older (6 week old) lambs with distinct C. parvum isolates demonstrated that an increase in age at primary infection reduces the effect of clinical disease. Animals which were infected at <1 week of age were re-challenged at 6 weeks of age with either a homologous or heterologous infection. Results revealed that previous exposure does not protect against re-infection with the same or a different isolate of C. parvum. This study also demonstrated that an increase in infective dose leads to a shorter pre-patent period and that there are variations in the clinical manifestations of different isolates of the same Cryptosporidium species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vector-borne disease emergence in recent decades has been associated with different environmental drivers including changes in habitat, hosts and climate. Lyme borreliosis is among the most important vector-borne diseases in the Northern hemisphere and is an emerging disease in Scotland. Transmitted by Ixodid tick vectors between large numbers of wild vertebrate host species, Lyme borreliosis is caused by bacteria from the Borrelia burgdorferi sensu lato species group. Ecological studies can inform how environmental factors such as host abundance and community composition, habitat and landscape heterogeneity contribute to spatial and temporal variation in risk from B. burgdorferi s.l. In this thesis a range of approaches were used to investigate the effects of vertebrate host communities and individual host species as drivers of B. burgdorferi s.l. dynamics and its tick vector Ixodes ricinus. Host species differ in reservoir competence for B. burgdorferi s.l. and as hosts for ticks. Deer are incompetent transmission hosts for B. burgdorferi s.l. but are significant hosts of all life-stages of I. ricinus. Rodents and birds are important transmission hosts of B. burgdorferi s.l. and common hosts of immature life-stages of I. ricinus. In this thesis, surveys of woodland sites revealed variable effects of deer density on B. burgdorferi prevalence, from no effect (Chapter 2) to a possible ‘dilution’ effect resulting in lower prevalence at higher deer densities (Chapter 3). An invasive species in Scotland, the grey squirrel (Sciurus carolinensis), was found to host diverse genotypes of B. burgdorferi s.l. and may act as a spill-over host for strains maintained by native host species (Chapter 4). Habitat fragmentation may alter the dynamics of B. burgdorferi s.l. via effects on the host community and host movements. In this thesis, there was lack of persistence of the rodent associated genospecies of B. burgdorferi s.l. within a naturally fragmented landscape (Chapter 3). Rodent host biology, particularly population cycles and dispersal ability are likely to affect pathogen persistence and recolonization in fragmented habitats. Heterogeneity in disease dynamics can occur spatially and temporally due to differences in the host community, habitat and climatic factors. Higher numbers of I. ricinus nymphs, and a higher probability of detecting a nymph infected with B. burgdorferi s.l., were found in areas with warmer climates estimated by growing degree days (Chapter 2). The ground vegetation type associated with the highest number of I. ricinus nymphs varied between studies in this thesis (Chapter 2 & 3) and does not appear to be a reliable predictor across large areas. B. burgdorferi s.l. prevalence and genospecies composition was highly variable for the same sites sampled in subsequent years (Chapter 2). This suggests that dynamic variables such as reservoir host densities and deer should be measured as well as more static habitat and climatic factors to understand the drivers of B. burgdorferi s.l. infection in ticks. Heterogeneity in parasite loads amongst hosts is a common finding which has implications for disease ecology and management. Using a 17-year data set for tick infestations in a wild bird community in Scotland, different effects of age and sex on tick burdens were found among four species of passerine bird (Chapter 5). There were also different rates of decline in tick burdens among bird species in response to a long term decrease in questing tick pressure over the study. Species specific patterns may be driven by differences in behaviour and immunity and highlight the importance of comparative approaches. Combining whole genome sequencing (WGS) and population genetics approaches offers a novel approach to identify ecological drivers of pathogen populations. An initial analysis of WGS from B. burgdorferi s.s. isolates sampled 16 years apart suggests that there is a signal of measurable evolution (Chapter 6). This suggests demographic analyses may be applied to understand ecological and evolutionary processes of these bacteria. This work shows how host communities, habitat and climatic factors can affect the local transmission dynamics of B. burgdorferi s.l. and the potential risk of infection to humans. Spatial and temporal heterogeneity in pathogen dynamics poses challenges for the prediction of risk. New tools such as WGS of the pathogen (Chapter 6) and blood meal analysis techniques will add power to future studies on the ecology and evolution of B. burgdorferi s.l.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dengue fever is one of the most important mosquito-borne diseases worldwide and is caused by infection with dengue virus (DENV). The disease is endemic in tropical and sub-tropical regions and has increased remarkably in the last few decades. At present, there is no antiviral or approved vaccine against the virus. Treatment of dengue patients is usually supportive, through oral or intravenous rehydration, or by blood transfusion for more severe dengue cases. Infection of DENV in humans and mosquitoes involves a complex interplay between the virus and host factors. This results in regulation of numerous intracellular processes, such as signal transduction and gene transcription which leads to progression of disease. To understand the mechanisms underlying the disease, the study of virus and host factors is therefore essential and could lead to the identification of human proteins modulating an essential step in the virus life cycle. Knowledge of these human proteins could lead to the discovery of potential new drug targets and disease control strategies in the future. Recent advances of high throughput screening technologies have provided researchers with molecular tools to carry out investigations on a large scale. Several studies have focused on determination of the host factors during DENV infection in human and mosquito cells. For instance, a genome-wide RNA interference (RNAi) screen has identified host factors that potentially play an important role in both DENV and West Nile virus replication (Krishnan et al. 2008). In the present study, a high-throughput yeast two-hybrid screen has been utilised in order to identify human factors interacting with DENV non-structural proteins. From the screen, 94 potential human interactors were identified. These include proteins involved in immune signalling regulation, potassium voltage-gated channels, transcriptional regulators, protein transporters and endoplasmic reticulum-associated proteins. Validation of fifteen of these human interactions revealed twelve of them strongly interacted with DENV proteins. Two proteins of particular interest were selected for further investigations of functional biological systems at the molecular level. These proteins, including a nuclear-associated protein BANP and a voltage-gated potassium channel Kv1.3, both have been identified through interaction with the DENV NS2A. BANP is known to be involved in NF-kB immune signalling pathway, whereas, Kv1.3 is known to play an important role in regulating passive flow of potassium ions upon changes in the cell transmembrane potential. This study also initiated a construction of an Aedes aegypti cDNA library for use with DENV proteins in Y2H screen. However, several issues were encountered during the study which made the library unsuitable for protein interaction analysis. In parallel, innate immune signalling was also optimised for downstream analysis. Overall, the work presented in this thesis, in particular the Y2H screen provides a number of human factors potentially targeted by DENV during infection. Nonetheless, more work is required to be done in order to validate these proteins and determine their functional properties, as well as testing them with infectious DENV to establish a biological significance. In the long term, data from this study will be useful for investigating potential human factors for development of antiviral strategies against dengue.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The investigation of pathogen persistence in vector-borne diseases is important in different ecological and epidemiological contexts. In this thesis, I have developed deterministic and stochastic models to help investigating the pathogen persistence in host-vector systems by using efficient modelling paradigms. A general introduction with aims and objectives of the studies conducted in the thesis are provided in Chapter 1. The mathematical treatment of models used in the thesis is provided in Chapter 2 where the models are found locally asymptotically stable. The models used in the rest of the thesis are based on either the same or similar mathematical structure studied in this chapter. After that, there are three different experiments that are conducted in this thesis to study the pathogen persistence. In Chapter 3, I characterize pathogen persistence in terms of the Critical Community Size (CCS) and find its relationship with the model parameters. In this study, the stochastic versions of two epidemiologically different host-vector models are used for estimating CCS. I note that the model parameters and their algebraic combination, in addition to the seroprevalence level of the host population, can be used to quantify CCS. The study undertaken in Chapter 4 is used to estimate pathogen persistence using both deterministic and stochastic versions of a model with seasonal birth rate of the vectors. Through stochastic simulations we investigate the pattern of epidemics after the introduction of an infectious individual at different times of the year. The results show that the disease dynamics are altered by the seasonal variation. The higher levels of pre-existing seroprevalence reduces the probability of invasion of dengue. In Chapter 5, I considered two alternate ways to represent the dynamics of a host-vector model. Both of the approximate models are investigated for the parameter regions where the approximation fails to hold. Moreover, three metrics are used to compare them with the Full model. In addition to the computational benefits, these approximations are used to investigate to what degree the inclusion of the vector population in the dynamics of the system is important. Finally, in Chapter 6, I present the summary of studies undertaken and possible extensions for the future work.