4 resultados para heart and stroke illness
em Glasgow Theses Service
Resumo:
Cardiovascular diseases (CVDs) including, hypertension, coronary heart disease and heart failure are the leading cause of death worldwide. Hypertension, a chronic increase in blood pressure above 140/90 mmHg, is the single main contributor to deaths due to heart disease and stroke. In the heart, hypertension results in adaptive cardiac remodelling, including LV hypertrophy to normalize wall stress and maintain cardiac contractile function. However, chronic increases in BP results in the development of hypertensive heart disease (HHD). HHD describes the maladaptive changes during cardiac remodelling which result in reduced systolic and diastolic function and eventually heart failure. This includes ventricular dilation due to eccentric hypertrophy, cardiac fibrosis which stiffens the ventricular wall and microvascular rarefaction resulting in a decrease in coronary blood flow albeit an increase in energy demand. Chronic activation of the renin-angiotensin-system (RAS) with its effector peptide angiotensin (Ang)II plays a key role in the development of hypertension and the maladaptive changes in HHD. Ang II acts via the angiotensin type 1 receptor (AT1R) to mediate most of its pathological actions during HHD, including stimulation of cardiomyocyte hypertrophy, activation of cardiac fibroblasts and increased collagen deposition. The counter-regulatory axis of the RAS which is centred on the ACE2/Ang-(1-7)/Mas axis has been demonstrated to counteract the pathological actions of Ang II in the heart and vasculature. Ang-(1-7) via the Mas receptor prevents Ang II-induced cardiac hypertrophy and fibrosis and improves cardiac contractile function in animal models of HHD. In contrast, less is known about Ang-(1-9) although evidence has demonstrated that Ang-(1-9) also antagonises Ang II and is anti-hypertrophic and anti-fibrotic in animal models of acute cardiac remodelling. However, so far it is not well documented whether Ang-(1-9) can reverse established cardiac dysfunction and remodelling and whether it is beneficial when administered chronically. Therefore, the main aim of this thesis was to assess the effects of chronic Ang-(1-9) administration on cardiac structure and function in a model of Ang II-induced cardiac remodelling. Furthermore, this thesis aimed to investigate novel pathways contributing to the pathological remodelling in response to Ang II. First, a mouse model of chronic Ang II infusion was established and characterised by comparing the structural and functional effects of the infusion of a low and high dose of Ang II after 6 weeks. Echocardiographic measurements demonstrated that low dose Ang II infusion resulted in a gradual decline in cardiac function while a high dose of Ang II induced acute cardiac contractile dysfunction. Both doses equally induced the development of cardiac hypertrophy and cardiac fibrosis characterised by an increase in the deposition of collagen I and collagen III. Moreover, increases in gene expression of fibrotic and hypertrophic markers could be detected following high dose Ang II infusion over 6 weeks. Following this characterisation, the high dose infusion model was used to assess the effects of Ang-(1-9) on cardiac structural and functional remodelling in established disease. Initially, it was evaluated whether Ang-(1-9) can reverse Ang II-induced cardiac disease by administering Ang-(1-9) for 2-4 weeks following an initial 2 week infusion of a high dose of Ang II to induce cardiac contractile dysfunction. The infusion of Ang-(1-9) for 2 weeks was associated with a significant improvement of LV fractional shortening compared to Ang II infusion. However, after 4 weeks fractional shortening declined to Ang II levels. Despite the transient improvement in cardiac contractile function, Ang-(1-9) did not modulate blood pressure, LV hypertrophy or cardiac fibrosis. To further investigate the direct cardiac effects of Ang-(1-9), cardiac contractile performance in response to Ang-(1-9) was evaluated in the isolated Langendorff-perfused rat heart. Perfusion of Ang-(1-9) in the paced and spontaneously beating rat heart mediated a positive inotropic effect characterised by an increase in LV developed pressure, cardiac contractility and relaxation. This was in contrast to Ang II and Ang-(1-7). Furthermore, the positive inotropic effect to Ang-(1-9) was blocked by the AT1R antagonist losartan and the protein kinase A inhibitor H89. Next, endothelial-to-mesenchymal transition (EndMT) as a novel pathway that may contribute to Ang II-induced cardiac remodelling was assessed in Ang II-infused mice in vivo and in human coronary artery endothelial cells (HCAEC) in vitro. Infusion of Ang II to mice for 2-6 weeks resulted in a significant decrease in myocardial capillary density and this was associated with the occurrence of dual labelling of endothelial cells for endothelial and mesenchymal markers. In vitro stimulation of HCAEC with TGFβ and Ang II revealed that Ang II exacerbated TGF-induced gene expression of mesenchymal markers. This was not correlated with any changes in SMAD2 or ERK1/2 phosphorylation with co-stimulation of TGFβ and Ang II. However, superoxide production was significantly increased in HCAEC stimulated with Ang II but not TGFβ. Finally, the role of Ang II in microvesicle (MV)-mediated cardiomyocyte hypertrophy was investigated. MVs purified from neonatal rat cardiac fibroblasts were found to contain detectable Ang II and this was increased by stimulation of fibroblasts with Ang II. Treatment of cardiomyocytes with MVs derived from Ang II-stimulated fibroblasts induced cardiomyocyte hypertrophy which could be blocked by the AT1R antagonist losartan and an inhibitor of MV synthesis and release brefeldin A. Furthermore, Ang II was found to be present in MVs isolated from serum and plasma of Ang II-infused mice and SHRSP and WKY rats. Overall, the findings of this thesis demonstrate for the first time that the actions of Ang-(1-9) in cardiac pathology are dependent on its time of administration and that Ang-(1-9) can reverse Ang II-induced cardiac contractile dysfunction by acting as a positive inotrope. Furthermore, this thesis demonstrates evidence for an involvement of EndMT and MV signalling as novel pathways contributing to Ang II-induced cardiac fibrosis and hypertrophy, respectively. These findings provide incentive to further investigate the therapeutic potential of Ang-(1-9) in the treatment of cardiac contractile dysfunction in heart disease, establish the importance of novel pathways in Ang II-mediated cardiac remodelling and evaluate the significance of the presence of Ang II in plasma-derived MVs.
Resumo:
Cardiovascular diseases (CVD) is a leading cause of death in the world. Despite effective treatment regimens for ischaemic heart disease (IHD) and ischaemic stroke, mortality and recurrence rates remain high. Antiplatelet therapy is on effective treatment and reduces the risk of recurrent heart attack and stroke. Nevertheless, there are patients who stopped or interrupted their antiplatelet therapy for certain reasons or some patients may be resistant or poor responders to antiplatelet therapy. Furthermore, there is evidence of rebound effect in platelet activity after antiplatelet cessation and this may associate with increased risk of cardiovascular event. This thesis is divided into five main chapters (chapters 3 to 7) which attempt to provide data to help resolve the uncertainty. Chapter 1 highlights the background of cardiovascular diseases and the global burden of cardiovascular and cerebrovascular diseases. The metabolism of platelets, antiplatelet therapy and current antiplatelet therapy guidelines are described, followed by discussion of the risk of cardiovascular event and changes in antiplatelet therapy. Chapter 2 describes the data source from Virtual International Stroke Trial Archive (VISTA) and National Health Service Greater Glasgow and Clyde (NHSGGC) Safe Haven, followed by definition of outcome measures. In chapter 3, Virtual International Stroke Trial Archive (VISTA) data was examined to test whether continue with the same antiplatelet therapy or changing to a new antiplatelet regimen reduces the risk of subsequent events in patients who experience a stroke whilst taking antiplatelet therapy. The findings indicate that subjects who switch to a new antiplatelet regimen after stroke did not have a lower early recurrence rate than subjects who continued with the same antiplatelet therapy. Observations on bleeding complications were similar in both groups. However, changing antiplatelet regimen after stroke was associated with more favourable functional outcome across a full scale modified Rankin Scale (mRS) at 90 days. In chapter 4, association between early or later initiation of antiplatelet with a recurrent ischaemic stroke and bleeding complications was assessed using VISTA data. The findings indicate that there was no association between a recurrent ischaemic stroke and timing of initiation of antiplatelet drug after stroke. However, early initiation was associated with increased risk of bleeding. In terms of functional outcomes, this study demonstrated that the mid-time and late initiation of antiplatelet therapy after acute stroke are associated with better functional outcomes compared with early initiation. In chapter 5, a nested case-control study was performed to explore the rate of antiplatelet cessation and interruption in a sample of patients with recent ischaemic stroke and to assess the risk of cardiovascular events associated with cessation and interruption of antiplatelet. It was found that there was no increased risk of cardiovascular event among patients who had early cessation or interrupted/stopped antiplatelet therapy within 90 days following acute ischaemic stroke. In chapter 6, the incidence and predictors of cardiovascular events after DAPT cessation were evaluated. The incidence of cardiovascular event while taking DAPT and following discontinuation of DAPT was 15.7% and 16.7% respectively. This study found that increasing age was associated with an increased risk of cardiovascular event, whereas, revascularization-treated patients and longer duration of DAPT, were each associated with a decreased risk. The duration of DAPT six months and less was associated a significantly higher risk for cardiovascular event. In chapter 7, an untargeted metabolomics analysis was performed while on DAPT (aspirin plus ticagrelor) and once they stopped ticagrelor to identify metabolite changes associated with cardiovascular events after stopping DAPT. Ten ACS patients were recruited in this study and data were analysed for seven patients. Three hundred eleven putative metabolites were identified. This study found 16 putative metabolites significantly altered following ticagrelor cessation. Of these, seven metabolites were from lipid pathway and down-regulated some up to 3-fold. On the other hand, adenosine, from nucleotide metabolism was upregulated up to 2.6-fold. It concluded that there are changes in numerous pathways following DAPT discontinuation and whether these changes differ in patients who have cardiovascular event after stopping DAPT warrant further investigation. In chapter 8, a summary of the findings of this thesis are presented as well as the future directions of research in this area.
Resumo:
Background: Depression is a major health problem worldwide and the majority of patients presenting with depressive symptoms are managed in primary care. Current approaches for assessing depressive symptoms in primary care are not accurate in predicting future clinical outcomes, which may potentially lead to over or under treatment. The Allostatic Load (AL) theory suggests that by measuring multi-system biomarker levels as a proxy of measuring multi-system physiological dysregulation, it is possible to identify individuals at risk of having adverse health outcomes at a prodromal stage. Allostatic Index (AI) score, calculated by applying statistical formulations to different multi-system biomarkers, have been associated with depressive symptoms. Aims and Objectives: To test the hypothesis, that a combination of allostatic load (AL) biomarkers will form a predictive algorithm in defining clinically meaningful outcomes in a population of patients presenting with depressive symptoms. The key objectives were: 1. To explore the relationship between various allostatic load biomarkers and prevalence of depressive symptoms in patients, especially in patients diagnosed with three common cardiometabolic diseases (Coronary Heart Disease (CHD), Diabetes and Stroke). 2 To explore whether allostatic load biomarkers predict clinical outcomes in patients with depressive symptoms, especially in patients with three common cardiometabolic diseases (CHD, Diabetes and Stroke). 3 To develop a predictive tool to identify individuals with depressive symptoms at highest risk of adverse clinical outcomes. Methods: Datasets used: ‘DepChron’ was a dataset of 35,537 patients with existing cardiometabolic disease collected as a part of routine clinical practice. ‘Psobid’ was a research data source containing health related information from 666 participants recruited from the general population. The clinical outcomes for 3 both datasets were studied using electronic data linkage to hospital and mortality health records, undertaken by Information Services Division, Scotland. Cross-sectional associations between allostatic load biomarkers calculated at baseline, with clinical severity of depression assessed by a symptom score, were assessed using logistic and linear regression models in both datasets. Cox’s proportional hazards survival analysis models were used to assess the relationship of allostatic load biomarkers at baseline and the risk of adverse physical health outcomes at follow-up, in patients with depressive symptoms. The possibility of interaction between depressive symptoms and allostatic load biomarkers in risk prediction of adverse clinical outcomes was studied using the analysis of variance (ANOVA) test. Finally, the value of constructing a risk scoring scale using patient demographics and allostatic load biomarkers for predicting adverse outcomes in depressed patients was investigated using clinical risk prediction modelling and Area Under Curve (AUC) statistics. Key Results: Literature Review Findings. The literature review showed that twelve blood based peripheral biomarkers were statistically significant in predicting six different clinical outcomes in participants with depressive symptoms. Outcomes related to both mental health (depressive symptoms) and physical health were statistically associated with pre-treatment levels of peripheral biomarkers; however only two studies investigated outcomes related to physical health. Cross-sectional Analysis Findings: In DepChron, dysregulation of individual allostatic biomarkers (mainly cardiometabolic) were found to have a non-linear association with increased probability of co-morbid depressive symptoms (as assessed by Hospital Anxiety and Depression Score HADS-D≥8). A composite AI score constructed using five biomarkers did not lead to any improvement in the observed strength of the association. In Psobid, BMI was found to have a significant cross-sectional association with the probability of depressive symptoms (assessed by General Health Questionnaire GHQ-28≥5). BMI, triglycerides, highly sensitive C - reactive 4 protein (CRP) and High Density Lipoprotein-HDL cholesterol were found to have a significant cross-sectional relationship with the continuous measure of GHQ-28. A composite AI score constructed using 12 biomarkers did not show a significant association with depressive symptoms among Psobid participants. Longitudinal Analysis Findings: In DepChron, three clinical outcomes were studied over four years: all-cause death, all-cause hospital admissions and composite major adverse cardiovascular outcome-MACE (cardiovascular death or admission due to MI/stroke/HF). Presence of depressive symptoms and composite AI score calculated using mainly peripheral cardiometabolic biomarkers was found to have a significant association with all three clinical outcomes over the following four years in DepChron patients. There was no evidence of an interaction between AI score and presence of depressive symptoms in risk prediction of any of the three clinical outcomes. There was a statistically significant interaction noted between SBP and depressive symptoms in risk prediction of major adverse cardiovascular outcome, and also between HbA1c and depressive symptoms in risk prediction of all-cause mortality for patients with diabetes. In Psobid, depressive symptoms (assessed by GHQ-28≥5) did not have a statistically significant association with any of the four outcomes under study at seven years: all cause death, all cause hospital admission, MACE and incidence of new cancer. A composite AI score at baseline had a significant association with the risk of MACE at seven years, after adjusting for confounders. A continuous measure of IL-6 observed at baseline had a significant association with the risk of three clinical outcomes- all-cause mortality, all-cause hospital admissions and major adverse cardiovascular event. Raised total cholesterol at baseline was associated with lower risk of all-cause death at seven years while raised waist hip ratio- WHR at baseline was associated with higher risk of MACE at seven years among Psobid participants. There was no significant interaction between depressive symptoms and peripheral biomarkers (individual or combined) in risk prediction of any of the four clinical outcomes under consideration. Risk Scoring System Development: In the DepChron cohort, a scoring system was constructed based on eight baseline demographic and clinical variables to predict the risk of MACE over four years. The AUC value for the risk scoring system was modest at 56.7% (95% CI 55.6 to 57.5%). In Psobid, it was not possible to perform this analysis due to the low event rate observed for the clinical outcomes. Conclusion: Individual peripheral biomarkers were found to have a cross-sectional association with depressive symptoms both in patients with cardiometabolic disease and middle-aged participants recruited from the general population. AI score calculated with different statistical formulations was of no greater benefit in predicting concurrent depressive symptoms or clinical outcomes at follow-up, over and above its individual constituent biomarkers, in either patient cohort. SBP had a significant interaction with depressive symptoms in predicting cardiovascular events in patients with cardiometabolic disease; HbA1c had a significant interaction with depressive symptoms in predicting all-cause mortality in patients with diabetes. Peripheral biomarkers may have a role in predicting clinical outcomes in patients with depressive symptoms, especially for those with existing cardiometabolic disease, and this merits further investigation.
Resumo:
Congenital heart disease (CHD) is the most common birth defect, causing an important rate of morbidity and mortality. Treatment of CHD requires surgical correction in a significant percentage of cases which exposes patients to cardiac and end organ injury. Cardiac surgical procedures often require the utilisation of cardiopulmonary bypass (CPB), a system that replaces heart and lungs function by diverting circulation into an external circuit. The use of CPB can initiate potent inflammatory responses, in addition a proportion of procedures require a period of aortic cross clamp during which the heart is rendered ischaemic and is exposed to injury. High O2 concentrations are used during cardiac procedures and when circulation is re-established to the heart which had adjusted metabolically to ischaemia, further injury is caused in a process known as ischaemic reperfusion injury (IRI). Several strategies are in place in order to protect the heart during surgery, however injury is still caused, having detrimental effects in patients at short and long term. Remote ischaemic preconditioning (RIPC) is a technique proposed as a potential cardioprotective measure. It consists of exposing a remote tissue bed to brief episodes of ischaemia prior to surgery in order to activate protective pathways that would act during CPB, ischaemia and reperfusion. This study aimed to assess RIPC in paediatric patients requiring CHD surgical correction with a translational approach, integrating clinical outcome, marker analysis, cardiac function parameters and molecular mechanisms within the cardiac tissue. A prospective, single blinded, randomized, controlled trial was conducted applying a RIPC protocol to randomised patients through episodes of limb ischaemia on the day before surgery which was repeated right before the surgery started, after anaesthesia induction. Blood samples were obtained before surgery and at three post-operative time points from venous lines, additional pre and post-bypass blood samples were obtained from the right atrium. Myocardial tissue was resected during the ischaemic period of surgery. Echocardiographic images were obtained before the surgery started after anaesthetic induction and the day after surgery, images were stored for later off line analysis. PICU surveillance data was collected including ventilation parameters, inotrope use, standard laboratory analysis and six hourly blood gas analysis. Pre and post-operative quantitation of markers in blood specimens included cardiac troponin I (cTnI) and B-type natriuretic peptide (BNP), inflammatory mediators including interleukins IL-6, IL-8, IL-10, tumour necrosis factor (TNF-α), and the adhesion molecules ICAM-1 and VCAM-1; the renal marker Cystatin C and the cardiovascular markers asymmetric dymethylarginine (ADMA) and symmetric dymethylarginine (SDMA). Nitric oxide (NO) metabolites and cyclic guanosine monophosphate (cGMP) were measured before and after bypass. Myocardial tissue was processed at baseline and after incubation at hyperoxic concentration during four hours in order to mimic surgical conditions. Expression of genes involved in IRI and RIPC pathways was analysed including heat shock proteins (HSPs), toll like receptors (TLRs), transcription factors nuclear factor κ-B (NF- κ-B) and hypoxia inducible factor 1 (HIF-1). The participation of hydrogen sulfide enzymatic genes, apelin and its receptor were explored. There was no significant difference according to group allocation in any of the echocardiographic parameters. There was a tendency for higher cTnI values and inotropic score in control patients post-operatively, however this was not statistically significant. BNP presented no significant difference according to group allocation. Inflammatory parameters tended to be higher in the control group, however only TNF- α was significantly higher. There was no difference in levels of Cystatin C, NO metabolites, cGMP, ADMA or SDMA. RIPC patients required shorter PICU stay, all other clinical and laboratory analysis presented no difference related to the intervention. Gene expression analysis revealed interesting patterns before and after incubation. HSP-60 presented a lower expression at baseline in tissue corresponding to RIPC patients, no other differences were found. This study provided with valuable descriptive information on previously known and newly explored parameters in the study population. Demographic characteristics and the presence of cyanosis before surgery influenced patterns of activity in several parameters, numerous indicators were linked to the degree of injury suffered by the myocardium. RIPC did not reduce markers of cardiac injury or improved echocardiographic parameters and it did not have an effect on end organ function; some effects were seen in inflammatory responses and gene expression analysis. Nevertheless, an important clinical outcome indicator, PICU length of stay was reduced suggesting benefit from the intervention. Larger studies with more statistical power could determine if the tendency of lower injury and inflammatory markers linked to RIPC is real. The present results mostly support findings of larger multicentre trials which have reported no cardiac benefit from RIPC in paediatric cardiac surgery.