2 resultados para folding
em Glasgow Theses Service
Resumo:
The folding and targeting of membrane proteins poses a major challenge to the cell, as they must remain insertion competent while their highly hydrophobic transmembrane (TM) domains are transferred from the ribosome, through the aqueous cytosol and into the lipid bilayer. The biogenesis of a mature membrane protein takes place through the insertion and integration into the lipid bilayer. A number of TM proteins have been shown to gain some degree of secondary structure within the ribosome tunnel and to retain this conformation throughout maturation. Although studies into the folding and targeting of a number of membrane proteins have been carried out to date, there is little information on one of the largest class of eukaryotic membrane proteins; the G-protein-coupled receptors (GPCRs). This project studies the early folding events of the human ortholog of GPR35. To analyse the structure of the 1st TM domain, intermediates were generated and assessed by the biochemical method of pegylation (PEG-MAL). A structurally-similar microbial opsin (Bacterioopsin) was also used to investigate the differences in the early protein folding within eukaryotic and prokaryotic translation systems. Results showed that neither the 1st TM domain of GPR35 nor Bacterioopsin were capable of compacting in the ribosome tunnel before their N-terminus reached the ribosome exit point. The results for this assay remained consistent whether the proteins were translated in a eukaryotic or prokaryotic translation system. To examine the communication mechanism between the ribosome, the nascent chain and the protein targeting pathway, crosslinking experiments were carried out using the homobifunctional lysine cross-linker BS3. Specifically, the data generated here show that the nascent chain of GPR35 reaches the ribosomal protein uL23 in an extended conformation and interacts with the SRP protein as it exits the ribosome tunnel. This confirms the role of SRP in the co-translational targeting of GPR35. Using these methods insights into the early folding of GPCRs has been obtained. Further experiments using site-directed mutagenesis to reduce hydrophobicity in the 1st TM domain of GPR35, highlighted the mechanisms by which GPCRs are targeted to the endoplasmic reticulum. Confirming that hydrophobicity within the signal anchor sequence is essential of SRP-dependent targeting. Following the successful interaction of the nascent GPR35 and SRP, GPR35 is successfully targeted to ER membranes, shown here as dog pancreas microsomes (DPMs). Glycosylation of the GPR35 N-terminus was used to determine nascent chain structure as it is inserted into the ER membrane. These glycosylation experiments confirm that TM1 has obtained its compacted state whilst residing in the translocon. Finally, a site-specific cross-linking approach using the homobifunctional cysteine cross-linker, BMH, was used to study the lateral integration of GPR35 into the ER. Cross-linking of GPR35 TM1 and TM2 could be detected adjacent to a protein of ~45kDa, believed to be Sec61α. The loss of this adduct, as the nascent chain extends, showed the lateral movement of GPR35 TM1 from the translocon was dependent on the subsequent synthesis of TM2.
Resumo:
Monoclonal antibodies and novel antibody formats are currently one of the principal therapeutic in the biopharmaceutical industry worldwide and are widely used in the treatment of autoimmune diseases and cancer. It is for this reason that the productivity and quality of antibody production requires improvement; specifically investigations into the engineering of antibodies and any issues that may arise from the production of these therapeutics. The work presented in this thesis describes an investigation into the folding and assembly of seven antibodies plus the novel antibody format FabFv. IgG is comprised of two identical HCs and two identical LCs. The folding process of immunoglobulin is controlled by the CH1 domain within the HC. The CH1 domain remains in a disordered state and is sequestered by BiP in the endoplasmic reticulum. Upon the addition of a folded CL domain, BiP is displaced, the CH1 domain is able to fold and the complete IgG protein can then be secreted from the cell. The results presented in this thesis however, have outlined an additional mechanism for the folding of the CH1 domain. We have shown that the CH1 domain is able to fold in the absence of LC resulting in the secretion of HC dimers in a VH dependent manner. The proposed mechanism for the secretion of HC dimers suggests that some VH domains can interact with each other in order to bring the CH1 domains in close proximity to enable folding to occur. As HC dimer secretion is a hindrance in antibody production, this result has highlighted an engineering target to improve antibody yield. Examination of the folding of IgG4 with the variable region A33 has revealed the inability to secrete LC dimers, cleavage of the HC during expression and secretion of HC dimers in the Fab, FabFv and full length forms. The attributes described have also been shown to be variable region dependent. This has introduced a new concept that the variable domain is important in determining the expression and secretion of antibodies and their individual chains. Pulse chase and 2D gel electrophoresis analysis of the novel antibody format FabFv has revealed that the folding and expression of the LC and HC causes multimeric species of FabFv to be secreted, as opposed to the monomeric form which is the desired therapeutic. Our hypothesis is that this process occurs via a LC dependent mechanism. The proposed hypothesis suggests that further engineering to the LC could diminish the formation and secretion of FabFv multimers. The results from these investigations can be applied to increase the productivity of therapeutics and increase the biological understanding of the domain interactions of IgG during folding, assembly and secretion.