3 resultados para digital time with memory

em Glasgow Theses Service


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Technologies such as automobiles or mobile phones allow us to perform beyond our physical capabilities and travel faster or communicate over long distances. Technologies such as computers and calculators can also help us perform beyond our mental capabilities by storing and manipulating information that we would be unable to process or remember. In recent years there has been a growing interest in assistive technology for cognition (ATC) which can help people compensate for cognitive impairments. The aim of this thesis was to investigate ATC for memory to help people with memory difficulties which impacts independent functioning during everyday life. Chapter one argues that using both neuropsychological and human computing interaction theory and approaches is crucial when developing and researching ATC. Chapter two describes a systematic review and meta-analysis of studies which tested technology to aid memory for groups with ABI, stroke or degenerative disease. Good evidence was found supporting the efficacy of prompting devices which remind the user about a future intention at a set time. Chapter three looks at the prevalence of technologies and memory aids in current use by people with ABI and dementia and the factors that predicted this use. Pre-morbid use of technology, current use of non-tech aids and strategies and age (ABI group only) were the best predictors of this use. Based on the results, chapter four focuses on mobile phone based reminders for people with ABI. Focus groups were held with people with memory impairments after ABI and ABI caregivers (N=12) which discussed the barriers to uptake of mobile phone based reminding. Thematic analysis revealed six key themes that impact uptake of reminder apps; Perceived Need, Social Acceptability, Experience/Expectation, Desired Content and Functions, Cognitive Accessibility and Sensory/Motor Accessibility. The Perceived need theme described the difficulties with insight, motivation and memory which can prevent people from initially setting reminders on a smartphone. Chapter five investigates the efficacy and acceptability of unsolicited prompts (UPs) from a smartphone app (ForgetMeNot) to encourage people with ABI to set reminders. A single-case experimental design study evaluated use of the app over four weeks by three people with severe ABI living in a post-acute rehabilitation hospital. When six UPs were presented through the day from ForgetMeNot, daily reminder-setting and daily memory task completion increased compared to when using the app without the UPs. Chapter six investigates another barrier from chapter 4 – cognitive and sensory accessibility. A study is reported which shows that an app with ‘decision tree’ interface design (ApplTree) leads to more accurate reminder setting performance with no compromise of speed or independence (amount of guidance required) for people with ABI (n=14) compared to a calendar based interface. Chapter seven investigates the efficacy of a wearable reminding device (smartwatch) as a tool for delivering reminders set on a smartphone. Four community dwelling participants with memory difficulties following ABI were included in an ABA single case experimental design study. Three of the participants successfully used the smartwatch throughout the intervention weeks and these participants gave positive usability ratings. Two participants showed improved memory performance when using the smartwatch and all participants had marked decline in memory performance when the technology was removed. Chapter eight is a discussion which highlights the implications of these results for clinicians, researchers and designers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Physical places are given contextual meaning by the objects and people that make up the space. Presence in physical places can be utilised to support mobile interaction by making access to media and notifications on a smartphone easier and more visible to other people. Smartphone interfaces can be extended into the physical world in a meaningful way by anchoring digital content to artefacts, and interactions situated around physical artefacts can provide contextual meaning to private manipulations with a mobile device. Additionally, places themselves are designed to support a set of tasks, and the logical structure of places can be used to organise content on the smartphone. Menus that adapt the functionality of a smartphone can support the user by presenting the tools most likely to be needed just-in-time, so that information needs can be satisfied quickly and with little cognitive effort. Furthermore, places are often shared with people whom the user knows, and the smartphone can facilitate social situations by providing access to content that stimulates conversation. However, the smartphone can disrupt a collaborative environment, by alerting the user with unimportant notifications, or sucking the user in to the digital world with attractive content that is only shown on a private screen. Sharing smartphone content on a situated display creates an inclusive and unobtrusive user experience, and can increase focus on a primary task by allowing content to be read at a glance. Mobile interaction situated around artefacts of personal places is investigated as a way to support users to access content from their smartphone while managing their physical presence. A menu that adapts to personal places is evaluated to reduce the time and effort of app navigation, and coordinating smartphone content on a situated display is found to support social engagement and the negotiation of notifications. Improving the sensing of smartphone users in places is a challenge that is out-with the scope of this thesis. Instead, interaction designers and developers should be provided with low-cost positioning tools that utilise presence in places, and enable quantitative and qualitative data to be collected in user evaluations. Two lightweight positioning tools are developed with the low-cost sensors that are currently available: The Microsoft Kinect depth sensor allows movements of a smartphone user to be tracked in a limited area of a place, and Bluetooth beacons enable the larger context of a place to be detected. Positioning experiments with each sensor are performed to highlight the capabilities and limitations of current sensing techniques for designing interactions with a smartphone. Both tools enable prototypes to be built with a rapid prototyping approach, and mobile interactions can be tested with more advanced sensing techniques as they become available. Sensing technologies are becoming pervasive, and it will soon be possible to perform reliable place detection in-the-wild. Novel interactions that utilise presence in places can support smartphone users by making access to useful functionality easy and more visible to the people who matter most in everyday life.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Liquid chromatography coupled with mass spectrometry is one of the most powerful tools in the toxicologist’s arsenal to detect a wide variety of compounds from many different matrices. However, the huge number of potentially abused substances and new substances especially designed as intoxicants poses a problem in a forensic toxicology setting. Most methods are targeted and designed to cover a very specific drug or group of drugs while many other substances remain undetected. High resolution mass spectrometry, more specifically time-of-flight mass spectrometry, represents an extremely powerful tool in analysing a multitude of compounds not only simultaneously but also retroactively. The data obtained through the time-of-flight instrument contains all compounds made available from sample extraction and chromatography, which can be processed at a later time with an improved library to detect previously unrecognised compounds without having to analyse the respective sample again. The aim of this project was to determine the utility and limitations of time-of-flight mass spectrometry as a general and easily expandable screening method. The resolution of time-of-flight mass spectrometry allows for the separation of compounds with the same nominal mass but distinct exact masses without the need to separate them chromatographically. To simulate the wide variety of potentially encountered drugs in such a general screening method, seven drugs (morphine, cocaine, zolpidem, diazepam, amphetamine, MDEA and THC) were chosen to represent this variety in terms of mass, properties and functional groups. Consequently, several liquid-liquid and solid phase extractions were applied to urine samples to determine the most general suitable and unspecific extraction. Chromatography was optimised by investigating the parameters pH, concentration, organic solvent and gradient of the mobile phase to improve data obtained by the time-of-flight instrument. The resulting method was validated as a qualitative confirmation/identification method. Data processing was automated using the software TargetAnalysis, which provides excellent analyte recognition according to retention time, exact mass and isotope pattern. The recognition of isotope patterns allows excellent recognition of analytes even in interference rich mass spectra and proved to be a good positive indicator. Finally, the validated method was applied to samples received from the A& E Department of Glasgow Royal Infirmary in suspected drug abuse cases and samples received from the Scottish Prison Service, which we received from their own prevalence study targeting drugs of abuse in the prison population. The obtained data was processed with a library established in the course of this work.