2 resultados para biofilms

em Glasgow Theses Service


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Orthopaedic infections can be polymicrobial existing as a microbiome. Infections often incorporate staphylococcal species, including Staphylococcus aureus. Such infections can lead to life threatening illness and implant failure. Furthermore, biofilm formation on the implant surface can occur, increasing pathogenicity, exacerbating antibiotic resistance and altering antimicrobial mechanism of action. Bacteria change dramatically during the transition to a biofilm growth state: phenotypically; transcriptionally; and metabolically, highlighting the need for research into molecular mechanisms involved in biofilm formation. Metabolomics can provide a tool to analyse metabolic changes which are directly related to the expressed phenotype. Here, we aimed to provide greater understanding of orthopaedic infection caused by S. aureus and biofilm formation on the implant surface. Through metagenome analysis by employing: implant material extraction; DNA extraction; microbial enrichment; and whole genome sequencing, we present a microbiome study of the infected prosthesis to resolve the causative species of orthopaedic hip infection. Results highlight the presence of S. aureus as a primary cause of orthopaedic infection along with Enterococcus faecium and the presence of secondary pathogen Clostridium difficile. Although results were hindered by the presence of host contaminating DNA even after microbial enrichment, conclusions could be made over the potential increased pathogenicity caused by the presence of a secondary pathogen and highlight method and sample preparation considerations when undertaking such a study. Following this finding, studies were focused on an orthopaedic clinical isolate of S. aureus and a metabolome extraction method for staphylococcal biofilms was developed using cell lysis through bead beating and solvent metabolome extraction. The method was found to be reproducible when coupled with liquid chromatography-mass spectrometry (LC-MS) and bioinformatics, allowing for the detection of significant changes in metabolism between planktonic and biofilm cultures to be identified and drug mechanism of actions (MOA) to be studied. Metabolomics results highlight significant changes in a number of metabolic pathways including arginine biosynthesis and purine metabolism between the two cell populations, evidence of S. aureus responding to their changing environment, including oxygen availability and a decrease in pH. Focused investigations on purine metabolism looking for biofilm modulation effects were carried out. Modulation of the S. aureus biofilm phenotype was observed through the addition of exogenous metabolites. Inosine increased biofilm biomass while formycin B, an inosine analogue, showed a dispersal effect and a potential synergistic effect in biofilm dispersal when coupled with gentamycin. Changes in metabolism between planktonic cells and biofilms highlight the requirement for antimicrobial testing to be carried out against planktonic cells and biofilms. Untargeted metabolomics was used to study the MOA of triclosan in S. aureus. The triclosan target and MOA in bacteria has already been characterised, however, questions remain over its effects in bacteria. Although the use of triclosan has come under increasing speculation, its full effects are still largely unknown. Results show that triclosan can induce a cascade of detrimental events in the cell metabolism including significant changes in amino acid metabolism, affecting planktonic cells and biofilms. Results and conclusions provide greater understanding of orthopaedic infections and specifically focus on the S. aureus biofilm, confirming S. aureus as a primary cause of orthopaedic infection and using metabolomic analysis to look at the changing state of metabolism between the different growth states. Metabolomics is a valuable tool for biofilm and drug MOA studies, helping understand orthopaedic infection and implant failure, providing crucial insight into the biochemistry of bacteria for the potential for inferences to be gained, such as the MOA of antimicrobials and the identification of novel metabolic drug targets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Advances in healthcare over the last 100 years has resulted in an ever increasing elderly population. This presents greater challenges for adequate systemic and oral healthcare delivery. With increasing age there is a natural decline in oral health, leading to the loss of teeth and ultimately for some having to wear denture prosthesis. It is currently estimated that approximately one fifth of the UK and US populations have some form of removable prosthesis. The microbiology of denture induced mucosal inflammation is a pivotal factor to consider in denture care management, similar to many other oral diseases of microbial influence, such as caries, gingivitis and periodontitis. Dentures support the growth of microbial biofilms, structures commonly known as denture plaque. Microbiologically, denture stomatitis (DS) is a disease primarily considered to be of yeast aetiology, with the literature disproportionately focussed on Candida spp. However, the denture surface is capable of carrying up to 1011 microbes per milligram, the majority of which are bacteria. Thus it is apparent that denture plaque is more diverse than we assume. There is a fundamental gap in our understanding of the bacterial composition of denture plaque and the role that they may play in denture related disease such as DS. This is categorised as inflammation of the oral mucosa, a disease affecting around half of all denture wearers. It has been proposed that bacteria and fungi interact on the denture surface and that these polymicrobial interactions lead to synergism and increased DS pathogenesis. Therefore, understanding the denture microbiome composition is the key step to beginning to understand disease pathogenesis, and ultimately help improve treatments and identify novel targets for therapeutic and preventative strategies. A group of 131 patients were included within this study in which they provided samples from their dentures, palatal mucosa, saliva and dental plaque. Microbes residing on the denture surface were quantified using standard Miles and Misra culture technique which investigated the presence of Candida, aerobes and anaerobes. These clinical samples also underwent next generation sequencing using the Miseq Illumina platform to give a more global representation of the microbes present at each of these sites in the oral cavity of these denture wearers. This data was then used to compare the composition and diversity of denture, mucosal and dental plaque between one another, as well as between healthy and diseased individuals. Additional comparisons included denture type and the presence or absence of natural teeth. Furthermore, microbiome data was used to assess differences between patients with varying levels of oral hygiene. The host response to the denture microbiome was investigated by screening the patients saliva for the presence and quantification of a range of antimicrobial peptides that are associated with the oral cavity. Based on the microbiome data an in vitro biofilm model was developed that reflected the composition of denture plaque. These biofilms were then used to assess quantitative and compositional changes over time and in response to denture cleansing treatments. Finally, the systemic implications of denture plaque were assessed by screening denture plaque samples for the presence of nine well known respiratory pathogens using quantitative PCR. The results from this study have shown that the bacterial microbiome composition of denture wearers is not consistent throughout the mouth and varies depending on sample site. Moreover, the presence of natural dentition has a significant impact on the microbiome composition. As for healthy and diseased patients the data suggests that compositional changes responsible for disease progression are occurring at the mucosa, and that dentures may in fact be a reservoir for these microbes. In terms of denture hygiene practices, sleeping with a denture in situ was found to be a common occurrence. Furthermore, significant shifts in denture microbiome composition were found in these individuals when compared to the denture microbiome of those that removed their denture at night. As for the host response, some antimicrobial peptides were found to be significantly reduced in the absence of natural dentition, indicating that the oral immune response is gradually impaired with the loss of teeth. This study also identified potentially serious systemic implications in terms of respiratory infection, as 64.6% of patients carried respiratory pathogens on their denture. In conclusion, this is the first study to provide a detailed understanding of the oral microbiome of denture wearers, and has provided evidence that DS development is more complex than simply a candidal infection. Both fungal and bacterial kingdoms clearly play a role in defining the progression of DS. The biofilm model created in this study demonstrated its potential as a platform to test novel actives. Future use of this model will aid in greater understanding of host: biofilm interactions. Such findings are applicable to oral health and beyond, and may help to identify novel therapeutic targets for the treatment of DS and other biofilm associated diseases.