4 resultados para behaviour support plan

em Glasgow Theses Service


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis presents quantitative studies of T cell and dendritic cell (DC) behaviour in mouse lymph nodes (LNs) in the naive state and following immunisation. These processes are of importance and interest in basic immunology, and better understanding could improve both diagnostic capacity and therapeutic manipulations, potentially helping in producing more effective vaccines or developing treatments for autoimmune diseases. The problem is also interesting conceptually as it is relevant to other fields where 3D movement of objects is tracked with a discrete scanning interval. A general immunology introduction is presented in chapter 1. In chapter 2, I apply quantitative methods to multi-photon imaging data to measure how T cells and DCs are spatially arranged in LNs. This has been previously studied to describe differences between the naive and immunised state and as an indicator of the magnitude of the immune response in LNs, but previous analyses have been generally descriptive. The quantitative analysis shows that some of the previous conclusions may have been premature. In chapter 3, I use Bayesian state-space models to test some hypotheses about the mode of T cell search for DCs. A two-state mode of movement where T cells can be classified as either interacting to a DC or freely migrating is supported over a model where T cells would home in on DCs at distance through for example the action of chemokines. In chapter 4, I study whether T cell migration is linked to the geometric structure of the fibroblast reticular network (FRC). I find support for the hypothesis that the movement is constrained to the fibroblast reticular cell (FRC) network over an alternative 'random walk with persistence time' model where cells would move randomly, with a short-term persistence driven by a hypothetical T cell intrinsic 'clock'. I also present unexpected results on the FRC network geometry. Finally, a quantitative method is presented for addressing some measurement biases inherent to multi-photon imaging. In all three chapters, novel findings are made, and the methods developed have the potential for further use to address important problems in the field. In chapter 5, I present a summary and synthesis of results from chapters 3-4 and a more speculative discussion of these results and potential future directions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A study into the role of secreted CLIC3 in tumour cell invasion. The initiation and progression of cancers is thought to be linked to their relationship with a population of activated fibroblasts, which are associated with tumours. I have used an organotypic approach, in which plugs of collagen I are preconditioned with fibroblastic cells, to characterise the mechanisms through which carcinoma-associated fibroblasts (CAFs) influence the invasive behaviour of tumour cells. I have found that immortalised cancer-associated fibroblasts (iCAFs) support increased invasiveness of cancer cells, and that this is associated with the ability of CAFs to increase the fibrillar collagen content of the extracellular matrix (ECM). To gain mechanistic insight into this phenomenon, an in-depth SILAC-based mass proteomic analysis was conducted, which allowed quantitative comparison of the proteomes of iCAFs and immortalised normal fibroblast (iNFs) controls. Chloride Intracellular Channel Protein 3 (CLIC3) was one of the most significantly upregulated components of the iCAF proteome. Knockdown of CLIC3 in iCAFs reduced the ability of these cells to remodel the ECM and to support tumour cell invasion through organotypic plugs. A series of experiments, including proteomic analysis of cell culture medium that had been preconditioned by iCAFs, indicated that CLIC3 itself was a component of the iCAF secretome that was responsible for the ability of iCAFs to drive tumour cell invasiveness. Moreover, addition of soluble recombinant CLIC3 (rCLIC3) was sufficient to drive the extension of invasive pseudopods in cancer cell lines, and to promote disruption of the basement membrane in a 3D in vitro model of the ductal carcinoma in situ (DCIS) to invasive ductal carcinoma (IDC) transition. My investigation into the mechanism through which extracellular CLIC3 drives tumour cell invasiveness led me to focus on the relationship between CLIC3 and the ECM modifying enzyme, transglutaminase-2 (TG2). Through this, I have found that TG2 physically associates with CLIC3 and that TG2 is necessary for CLIC3 to drive tumour cell invasiveness. These data identifying CLIC3 as a key pro-invasive factor, which is secreted by CAFs, provides an unprecedented mechanism through which the stroma may drive cancer progression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most eukaryotic cell motility relies on plasma membrane protrusions, which depend on the actin cytoskeleton and its tight regulation. The SCAR/WAVE complex, a pentameric assembly comprising SCAR/WAVE, Nap1, CYFIP/Pir121, Abi and HSPC300, is a key driver of actin-based protrusions such as pseudopods. SCAR/WAVE is thought to activate the Arp2/3 complex, a crucial actin nucleator, after being itself activated by upstream signals such as active Rac1. Despite recent progress on the study of the SCAR/WAVE complex, its regulation is still incompletely understood, with Nap1’s role being particularly enigmatic. Upon screening for potential Nap1 binding partners in the social amoeba Dictyostelium discoideum – a well established model organism in the study of the actin cytoskeleton and cell motility – we found FAM49, a ~36 kDa protein of unknown function which is highly conserved in Metazoa (animals) and evolutionarily closer species such as D. discoideum. Interestingly, D. discoideum’s FAM49 and its homologs contain a DUF1394 domain, which is also predicted in CYFIP/Pir121 proteins and most likely involved in their direct binding to active Rac1, which in turn contributes to SCAR/WAVE’s activation. FAM49’s unknown role, apparent high degree of conservation and potential connections to SCAR/WAVE and Rac1 persuaded us to start investigating its function and biological relevance in D. discoideum, leading to the work presented in this thesis. Several pieces of our data collectively support a function for FAM49 in modulating the protrusive behaviour, and ultimately motility, of D. discoideum cells, as well as a regulatory link between FAM49 and Rac1. FAM49’s involvement in protrusion regulation was first hinted at by our observation that GFP-tagged FAM49 is enriched in pseudopods. The possibility of a link with Rac1 was then strengthened by two additional observations: first, pseudopodial GFP-FAM49 is substantially co-enriched with active Rac, both showing fairly comparable spatio-temporal accumulation dynamics; second, when dominant-active (G12V) Rac1 is expressed in cells, it triggers the recruitment and persistent accumulation of GFP-FAM49 at the plasma membrane, where both become highly co-enriched. We subsequently determined that fam49 KO cells differ from wild-type cells in the way they protrude and move, as assessed in under-agarose chemotaxis assays. In particular, our data indicate that fam49 KO cells tend to display a lower degree of global protrusive activity, their protrusions extend more slowly and are less discrete, and the cells end up moving at lower speeds and with higher directional persistence. This phenotype was substantially rescued by FAM49 re-expression. While re-expressing FAM49 in fam49 KO cells we generated putative FAM49 overexpressor cells; compared to wild-type cells, they displayed atypically thin pseudopods and what seemed to be an excessively dynamic, and perhaps less coordinated, protrusive behaviour. Additional data in our study suggest that pseudopods made by fam49 KO cells are still driven by SCAR/WAVE, which is clearly not being replaced by WASP (as is now known to be the case in D. discoideum cells lacking a functional SCAR/WAVE complex). Nonetheless, the peculiar dynamics of those pseudopods imply that SCAR/WAVE’s activity is regulated differently when FAM49 is lost, though it remains to be determined how. This thesis is the first report of a dedicated study on FAM49 and lays the foundation for future research on it.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the most popular sports globally, soccer has seen a rise in the demands of the game over recent years. An increase in intensity and playing demands, coupled with growing social and economic pressures on soccer players means that optimal preparation is of paramount importance. Recent research has found the modern game, depending on positional role, to consist of approximately 60% more sprint distance in the English Premier League, which was also found to be the case for frequency and success of discrete technical actions (Bush et al., 2015). As a result, the focus on soccer training and player preparedness is becoming more prevalent in scientific research. By designing the appropriate training load, and thus periodization strategies, the aim is to achieve peak fitness in the most efficient way, whilst minimising the risk of injury and illness. Traditionally, training intensity has been based on heart rate responses, however, the emergence of tracking microtechnology such as global positioning system (GPS) and inertial sensors are now able to further quantify biomechanical load as well as physiological stress. Detailed pictures of internal and external loading indices such as these then combine to produce a more holistic view of training load experience by the player during typical drills and phases of training in soccer. The premise of this research is to gain greater understanding of the physical demands of common training methodologies in elite soccer to support optimal match performance. The coaching process may then benefit from being able to prescribe the most effective training to support these. The first experimental chapter in this thesis began by quantify gross training loads of the pre-season and in-season phases in soccer. A broader picture of the training loads inherent in these distinct phases brought more detail as to the type and extent of external loading experienced by soccer players at these times, and how the inclusion of match play influences weekly training rhythms. Training volume (total distance) was found to be high at the start compared to the end of pre-season (37 kilometres and 28 kilometres), where high cardiovascular loads were attained as part of the conditioning focus. This progressed transiently, however, to involve higher-speed, acceleration and change-of-direction stimuli at the end of pre-season compared to the start and to that in-season (1.18 kilometres, 0.70 kilometres and 0.42 kilometres high-intensity running; with 37, 25 and 23 accelerations >3m/s2 respectively) . The decrease in volume and increase in maximal anaerobic activity was evident in the training focus as friendly matches were introduced before the competitive season. The influence of match-play as being a large physical dose in the training week may then determine the change in weekly periodisation and how resulting training loads applied and tapered, if necessary. The focus of research was then directed more specifically to the most common mode of training in soccer, that also featured regularly in the pre-season period in the present study, small-sided games (SSG). The subsequent studies examined numerous manipulations of this specific form of soccer conditioning, such as player numbers as well as absolute and relative playing space available. In contrast to some previous literature, changing the number of players did not seem to influence training responses significantly, although playing format in the possession style brought about larger effects for heart rate (89.9%HRmax) and average velocity (7.6km/h-1). However, the following studies (Chapters 5, 6 and 7) revealed a greater influence of relative playing space available to players in SSG. The larger area at their disposal brought about greater aerobic responses (~90%HRmax), by allowing higher average and peak velocities (>25km/h-1), as well as greater distance acceleration behaviour at greater thresholds (>2.8m/s2). Furthermore, the data points towards space as being a large determinant in strategy of the player in small-sided games (SSG), subsequently shaping their movement behaviour and resulting physical responses. For example, higher average velocities in a possession format (8km/h-1) reflects higher work rate and heart rate load but makes achieving significant neuromuscular accelerations at a high level difficult given higher starting velocities prior to the most intense accelerations (4.2km/h-1). By altering space available and even through intentional numerical imbalances in team numbers, it may be easier for coaches to achieve the desired stimulus for the session or individual player, whether that is for aerobic and neuromuscular conditioning. Large effects were found for heart rate being higher in the underloaded team (85-90%HRmax) compared to the team with more players (80-85%HRmax) as well as for RPE (5AU versus 7AU). This was also apparent for meterage and therefore average velocity. It would also seem neuromuscular load through high acceleration and deceleration efforts were more pronounced with less numbers (given the need to press and close down opponents, and in a larger area relative to the number of players on the underloaded team. The peak accelerations and deceleration achieved was also higher when playing with less players (3-6.2m/s2 and 3-6.1m/s2) Having detailed ways in which to reach desired physical loading responses in common small training formats, Chapter 8 compared SSG to larger 9v9 formats with full-size 11v11 friendly matches. This enabled absolute and relative comparisons to be made and to understand the extent to which smaller training formats are able to replicate the required movements to be successful in competition. In relative terms, it was revealed that relative acceleration distance and Player Load were higher in smaller 4v4 games than match-play (1.1m.min-1 and 0.3m.min-1 >3m/s2; 16.9AU versus 12AU). Although the smallest format did not replicate the high-velocity demands of matches, the results confirmed their efficacy in providing significant neuromuscular load during the training week, which may then be supplemented by high-intensity interval running in order to gain exposure to more maximal speed work. In summary, the data presented provide valuable information from GPS and inertial sensor microtechnology which may then be used to understand training better to manipulate types of load according to physical conditioning objectives. For example, a library of resources to direct planning of drills of varying cardiovascular, neuromuscular and perceptual load can be created to give more confidence in session outcomes. Combining external and internal load data of common soccer training drills, and their application across different phases and training objectives may give coaches a powerful tool to plan and periodize training.