2 resultados para Weight-loss
em Glasgow Theses Service
Resumo:
Receiving personalised feedback on body mass index and other health risk indicators may prompt behaviour change. Few studies have investigated men’s reactions to receiving objective feedback on such measures and detailed information on physical activity and sedentary time. The aim of my research was to understand the meanings different forms of objective feedback have for overweight/obese men, and to explore whether these varied between groups. Participants took part in Football Fans in Training, a gender-sensitised, weight loss programme delivered via Scottish Professional Football Clubs. Semi-structured interviews were conducted with 28 men, purposively sampled from four clubs to investigate the experiences of men who achieved and did not achieve their 5% weight loss target. Data were analysed using the principles of thematic analysis and interpreted through Self-Determination Theory and sociological understandings of masculinity. Several factors were vital in supporting a ‘motivational climate’ in which men could feel ‘at ease’ and adopt self-regulation strategies: the ‘place’ was described as motivating, whereas the ‘people’ (other men ‘like them’; fieldwork staff; community coaches) provided supportive and facilitative roles. Men who achieved greater weight loss were more likely to describe being motivated as a consequence of receiving information on their objective health risk indicators. They continued using self-monitoring technologies after the programme as it was enjoyable; or they had redefined themselves by integrating new-found activities into their lives and no longer relied on external technologies/feedback. They were more likely to see post-programme feedback as confirmation of success, so long as they could fully interpret the information. Men who did not achieve their 5% weight loss reported no longer being motivated to continue their activity levels or self-monitor them with a pedometer. Social support within the programme appeared more important. These men were also less positive about objective post-programme feedback which confirmed their lack of success and had less utility as a motivational tool. Providing different forms of objective feedback to men within an environment that has intrinsic value (e.g. football club setting) and congruent with common cultural constructions of masculinity, appears more conducive to health behaviour change.
Resumo:
Background: Body composition is affected by diseases, and affects responses to medical treatments, dosage of medicines, etc., while an abnormal body composition contributes to the causation of many chronic diseases. While we have reliable biochemical tests for certain nutritional parameters of body composition, such as iron or iodine status, and we have harnessed nuclear physics to estimate the body’s content of trace elements, the very basic quantification of body fat content and muscle mass remains highly problematic. Both body fat and muscle mass are vitally important, as they have opposing influences on chronic disease, but they have seldom been estimated as part of population health surveillance. Instead, most national surveys have merely reported BMI and waist, or sometimes the waist/hip ratio; these indices are convenient but do not have any specific biological meaning. Anthropometry offers a practical and inexpensive method for muscle and fat estimation in clinical and epidemiological settings; however, its use is imperfect due to many limitations, such as a shortage of reference data, misuse of terminology, unclear assumptions, and the absence of properly validated anthropometric equations. To date, anthropometric methods are not sensitive enough to detect muscle and fat loss. Aims: The aim of this thesis is to estimate Adipose/fat and muscle mass in health disease and during weight loss through; 1. evaluating and critiquing the literature, to identify the best-published prediction equations for adipose/fat and muscle mass estimation; 2. to derive and validate adipose tissue and muscle mass prediction equations; and 3.to evaluate the prediction equations along with anthropometric indices and the best equations retrieved from the literature in health, metabolic illness and during weight loss. Methods: a Systematic review using Cochrane Review method was used for reviewing muscle mass estimation papers that used MRI as the reference method. Fat mass estimation papers were critically reviewed. Mixed ethnic, age and body mass data that underwent whole body magnetic resonance imaging to quantify adipose tissue and muscle mass (dependent variable) and anthropometry (independent variable) were used in the derivation/validation analysis. Multiple regression and Bland-Altman plot were applied to evaluate the prediction equations. To determine how well the equations identify metabolic illness, English and Scottish health surveys were studied. Statistical analysis using multiple regression and binary logistic regression were applied to assess model fit and associations. Also, populations were divided into quintiles and relative risk was analysed. Finally, the prediction equations were evaluated by applying them to a pilot study of 10 subjects who underwent whole-body MRI, anthropometric measurements and muscle strength before and after weight loss to determine how well the equations identify adipose/fat mass and muscle mass change. Results: The estimation of fat mass has serious problems. Despite advances in technology and science, prediction equations for the estimation of fat mass depend on limited historical reference data and remain dependent upon assumptions that have not yet been properly validated for different population groups. Muscle mass does not have the same conceptual problems; however, its measurement is still problematic and reference data are scarce. The derivation and validation analysis in this thesis was satisfactory, compared to prediction equations in the literature they were similar or even better. Applying the prediction equations in metabolic illness and during weight loss presented an understanding on how well the equations identify metabolic illness showing significant associations with diabetes, hypertension, HbA1c and blood pressure. And moderate to high correlations with MRI-measured adipose tissue and muscle mass before and after weight loss. Conclusion: Adipose tissue mass and to an extent muscle mass can now be estimated for many purposes as population or groups means. However, these equations must not be used for assessing fatness and categorising individuals. Further exploration in different populations and health surveys would be valuable.