2 resultados para Visuo-spatial n-back task
em Glasgow Theses Service
Resumo:
Processing language is postulated to involve a mental simulation, or re-enactment of perceptual, motor, and introspective states that were acquired experientially (Barsalou, 1999, 2008). One such aspect that is mentally simulated during processing of certain concepts is spatial location. For example, upon processing the word “moon” the prominent spatial location of the concept (e.g. ‘upward’) is mentally simulated. In six eye-tracking experiments, we investigate how mental simulations of spatial location affect processing. We first address a conflict in previous literature whereby processing is shown to be impacted in both a facilitatory and inhibitory way. Two of our experiments showed that mental simulations of spatial association facilitate saccades launched toward compatible locations; however, a third experiment showed an inhibitory effect on saccades launched towards incompatible locations. We investigated these differences with further experiments, which led us to conclude that the nature of the effect (facilitatory or inhibitory) is dependent on the demands of the task and, in fitting with the theory of Grounded Cognition (Barsalou, 2008), that mental simulations impact processing in a dynamic way. Three further experiments explored the nature of verticality – specifically, whether ‘up’ is perceived as away from gravity, or above our head. Using similar eye-tracking methods, and by manipulating the position of participants, we were able to dissociate these two possible standpoints. The results showed that mental simulations of spatial location facilitated saccades to compatible locations, but only when verticality was dissociated from gravity (i.e. ‘up’ was above the participant’s head). We conclude that this is not due to an ‘embodied’ mental simulation, but rather a result of heavily ingrained visuo-motor association between vertical space and eye movements.
Resumo:
Healthy young adults demonstrate a group-level, systematic preference for stimuli presented in the left side of space relative to the right (‘pseudoneglect’) (Bowers & Heilman, 1980). This results in an overestimation of features such as size, brightness, numerosity and spatial frequency in the left hemispace, probably as a result of right cerebral hemisphere dominance for visuospatial attention. This spatial attention asymmetry is reduced in the healthy older population, and can be shifted entirely into right hemispace under certain conditions. Although this rightward shift has been consistently documented in behavioural experiments, there is very little neuroimaging evidence to explain this effect at a neuroanatomical level. In this thesis, I used behavioural methodology and electroencephalography (EEG) to map spatial attention asymmetries in young and older adults. I then use transcranial direct current stimulation (tDCS) to modulate these spatial biases, with the aim of assessing age-related differences in response to tDCS. In the first of three experiments presented in this thesis, I report in Chapter Two that five different spatial attention tasks provide consistent intra-task measures of spatial bias in young adults across two testing days. There were, however, no inter-task correlations between the five tasks, indicating that pseudoneglect is at least partially driven by task-dependent patterns of neural activity. In Chapter Three, anodal tDCS was applied separately to the left (P5) and right (P6) posterior parietal cortex (PPC) in young and older adults, with an aim to improve the detection of stimuli appearing in the contralateral visual field. There were no age differences in response to tDCS, but there were significant differences depending on baseline performance. Relative to a sham tDCS protocol, tDCS applied to the right PPC resulted in maintained visual detection across both visual fields in adults who were good at the task at baseline. In contrast, left PPC tDCS resulted in reduced detection sensitivity across both visual fields in poor performers. Finally, in Chapter Four, I report a right-hemisphere lateralisation of EEG activity in young adults that was present for long (but not short) landmark task lines. In contrast, older adults demonstrated no lateralised activity for either line length, thus providing novel evidence of an age-related reduction of hemispheric asymmetry in older adults. The results of this thesis provide evidence of a highly complex set of factors that underlie spatial attention asymmetries in healthy young and older adults.