2 resultados para Visual stimulus generation

em Glasgow Theses Service


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis is an investigation of structural brain abnormalities, as well as multisensory and unisensory processing deficits in autistic traits and Autism Spectrum Disorder (ASD). To achieve this, structural and functional magnetic resonance imaging (fMRI) and psychophysical techniques were employed. ASD is a neurodevelopmental condition which is characterised by the social communication and interaction deficits, as well as repetitive patterns of behaviour, interests and activities. These traits are thought to be present in a typical population. The Autism Spectrum Quotient questionnaire (AQ) was developed to assess the prevalence of autistic traits in the general population. Von dem Hagen et al. (2011) revealed a link between AQ with white matter (WM) and grey matter (GM) volume (using voxel-based-morphometry). However, their findings revealed no difference in GM in areas associated with social cognition. Cortical thickness (CT) measurements are known to be a more direct measure of cortical morphology than GM volume. Therefore, Chapter 2 investigated the relationship between AQ scores and CT in the same sample of participants. This study showed that AQ scores correlated with CT in the left temporo-occipital junction, left posterior cingulate, right precentral gyrus and bilateral precentral sulcus, in a typical population. These areas were previously associated with structural and functional differences in ASD. Thus the findings suggest, to some extent, autistic traits are reflected in brain structure - in the general population. The ability to integrate auditory and visual information is crucial to everyday life, and results are mixed regarding how ASD influences audiovisual integration. To investigate this question, Chapter 3 examined the Temporal Integration Window (TIW), which indicates how precisely sight and sound need to be temporally aligned so that a unitary audiovisual event can be perceived. 26 adult males with ASD and 26 age and IQ-matched typically developed males were presented with flash-beep (BF), point-light drummer, and face-voice (FV) displays with varying degrees of asynchrony and asked to make Synchrony Judgements (SJ) and Temporal Order Judgements (TOJ). Analysis of the data included fitting Gaussian functions as well as using an Independent Channels Model (ICM) to fit the data (Garcia-Perez & Alcala-Quintana, 2012). Gaussian curve fitting for SJs showed that the ASD group had a wider TIW, but for TOJ no group effect was found. The ICM supported these results and model parameters indicated that the wider TIW for SJs in the ASD group was not due to sensory processing at the unisensory level, but rather due to decreased temporal resolution at a decisional level of combining sensory information. Furthermore, when performing TOJ, the ICM revealed a smaller Point of Subjective Simultaneity (PSS; closer to physical synchrony) in the ASD group than in the TD group. Finding that audiovisual temporal processing is different in ASD encouraged us to investigate the neural correlates of multisensory as well as unisensory processing using functional magnetic resonance imaging fMRI. Therefore, Chapter 4 investigated audiovisual, auditory and visual processing in ASD of simple BF displays and complex, social FV displays. During a block design experiment, we measured the BOLD signal when 13 adults with ASD and 13 typically developed (TD) age-sex- and IQ- matched adults were presented with audiovisual, audio and visual information of BF and FV displays. Our analyses revealed that processing of audiovisual as well as unisensory auditory and visual stimulus conditions in both the BF and FV displays was associated with reduced activation in ASD. Audiovisual, auditory and visual conditions of FV stimuli revealed reduced activation in ASD in regions of the frontal cortex, while BF stimuli revealed reduced activation the lingual gyri. The inferior parietal gyrus revealed an interaction between stimulus sensory condition of BF stimuli and group. Conjunction analyses revealed smaller regions of the superior temporal cortex (STC) in ASD to be audiovisual sensitive. Against our predictions, the STC did not reveal any activation differences, per se, between the two groups. However, a superior frontal area was shown to be sensitive to audiovisual face-voice stimuli in the TD group, but not in the ASD group. Overall this study indicated differences in brain activity for audiovisual, auditory and visual processing of social and non-social stimuli in individuals with ASD compared to TD individuals. These results contrast previous behavioural findings, suggesting different audiovisual integration, yet intact auditory and visual processing in ASD. Our behavioural findings revealed audiovisual temporal processing deficits in ASD during SJ tasks, therefore we investigated the neural correlates of SJ in ASD and TD controls. Similar to Chapter 4, we used fMRI in Chapter 5 to investigate audiovisual temporal processing in ASD in the same participants as recruited in Chapter 4. BOLD signals were measured while the ASD and TD participants were asked to make SJ on audiovisual displays of different levels of asynchrony: the participants’ PSS, audio leading visual information (audio first), visual leading audio information (visual first). Whereas no effect of group was found with BF displays, increased putamen activation was observed in ASD participants compared to TD participants when making SJs on FV displays. Investigating SJ on audiovisual displays in the bilateral superior temporal gyrus (STG), an area involved in audiovisual integration (see Chapter 4), we found no group differences or interaction between group and levels of audiovisual asynchrony. The investigation of different levels of asynchrony revealed a complex pattern of results indicating a network of areas more involved in processing PSS than audio first and visual first, as well as areas responding differently to audio first compared to video first. These activation differences between audio first and video first in different brain areas are constant with the view that audio leading and visual leading stimuli are processed differently.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pseudoneglect represents the tendency for healthy individuals to show a slight but consistent bias in favour of stimuli appearing in the left visual field. The bias is often measured using variants of the line bisection task. An accurate model of the functional architecture of the visuospatial attention system must account for this widely observed phenomenon, as well as for modulation of the direction and magnitude of the bias within individuals by a variety of factors relating to the state of the participant and/or stimulus characteristics. To date, the neural correlates of pseudoneglect remain relatively unmapped. In the current thesis, I employed a combination of psychophysical measurements, electroencephalography (EEG) recording and transcranial direct current stimulation (tDCS) in an attempt to probe the neural generator(s) of pseudoneglect. In particular, I wished to utilise and investigate some of the factors known to modulate the bias (including age, time-on-task and the length of the to-be-bisected line) in order to identify neural processes and activity that are necessary and sufficient for the lateralized bias to arise. Across four experiments utilising a computerized version of a perceptual line bisection task, pseudoneglect was consistently observed at baseline in healthy young participants. However, decreased line length (experiments 1, 2 and 3), time-on-task (experiment 1) and healthy aging (experiment 3) were all found to modulate the bias. Specifically, all three modulations induced a rightward shift in subjective midpoint estimation. Additionally, the line length and time-on-task effects (experiment 1) and the line length and aging effects (experiment 3) were found to have additive relationships. In experiment 2, EEG measurements revealed the line length effect to be reflected in neural activity 100 – 200ms post-stimulus onset over source estimated posterior regions of the right hemisphere (RH: temporo-parietal junction (TPJ)). Long lines induced a hemispheric asymmetry in processing (in favour of the RH) during this period that was absent in short lines. In experiment 4, bi-parietal tDCS (Left Anodal/Right Cathodal) induced a polarity-specific rightward shift in bias, highlighting the crucial role played by parietal cortex in the genesis of pseudoneglect. The opposite polarity (Left Cathodal/Right Anodal) did not induce a change in bias. The combined results from the four experiments of the current thesis provide converging evidence as to the crucial role played by the RH in the genesis of pseudoneglect and in the processing of visual input more generally. The reduction in pseudoneglect with decreased line length, increased time-on-task and healthy aging may be explained by a reduction in RH function, and hence contribution to task processing, induced by each of these modulations. I discuss how behavioural and neuroimaging studies of pseudoneglect (and its various modulators) can provide empirical data upon which accurate formal models of visuospatial attention networks may be based and further tested.