2 resultados para Visual Cortex

em Glasgow Theses Service


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The social landscape is filled with an intricate web of species-specific desired objects and course of actions. Humans are highly social animals and, as they navigate this landscape, they need to produce adapted decision-making behaviour. Traditionally social and non-social neural mechanisms affecting choice have been investigated using different approaches. Recently, in an effort to unite these findings, two main theories have been proposed to explain how the brain might encode social and non-social motivational decision-making: the extended common currency and the social valuation specific schema (Ruff & Fehr 2014). One way to test these theories is to directly compare neural activity related to social and non-social decision outcomes within the same experimental setting. Here we address this issue by focusing on the neural substrates of social and non-social forms of uncertainty. Using functional magnetic resonance imaging (fMRI) we directly compared the neural representations of reward and risk prediction and errors (RePE and RiPE) in social and non- social situations using gambling games. We used a trust betting game to vary uncertainty along a social dimension (trustworthiness), and a card game (Preuschoff et al. 2006) to vary uncertainty along a non-social dimension (pure risk). The trust game was designed to maintain the same structure of the card game. In a first study, we exposed a divide between subcortical and cortical regions when comparing the way these regions process social and non-social forms of uncertainty during outcome anticipation. Activity in subcortical regions reflected social and non-social RePE, while activity in cortical regions correlated with social RePE and non-social RiPE. The second study focused on outcome delivery and integrated the concept of RiPE in non-social settings with that of fairness and monetary utility maximisation in social settings. In particular these results corroborate recent models of anterior insula function (Singer et al. 2009; Seth 2013), and expose a possible neural mechanism that weights fairness and uncertainty but not monetary utility. The third study focused on functionally defined regions of the early visual cortex (V1) showing how activity in these areas, traditionally considered only visual, might reflect motivational prediction errors in addition to known perceptual prediction mechanisms (den Ouden et al 2012). On the whole, while our results do not support unilaterally one or the other theory modeling the underlying neural dynamics of social and non-social forms of decision making, they provide a working framework where both general mechanisms might coexist.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pseudoneglect represents the tendency for healthy individuals to show a slight but consistent bias in favour of stimuli appearing in the left visual field. The bias is often measured using variants of the line bisection task. An accurate model of the functional architecture of the visuospatial attention system must account for this widely observed phenomenon, as well as for modulation of the direction and magnitude of the bias within individuals by a variety of factors relating to the state of the participant and/or stimulus characteristics. To date, the neural correlates of pseudoneglect remain relatively unmapped. In the current thesis, I employed a combination of psychophysical measurements, electroencephalography (EEG) recording and transcranial direct current stimulation (tDCS) in an attempt to probe the neural generator(s) of pseudoneglect. In particular, I wished to utilise and investigate some of the factors known to modulate the bias (including age, time-on-task and the length of the to-be-bisected line) in order to identify neural processes and activity that are necessary and sufficient for the lateralized bias to arise. Across four experiments utilising a computerized version of a perceptual line bisection task, pseudoneglect was consistently observed at baseline in healthy young participants. However, decreased line length (experiments 1, 2 and 3), time-on-task (experiment 1) and healthy aging (experiment 3) were all found to modulate the bias. Specifically, all three modulations induced a rightward shift in subjective midpoint estimation. Additionally, the line length and time-on-task effects (experiment 1) and the line length and aging effects (experiment 3) were found to have additive relationships. In experiment 2, EEG measurements revealed the line length effect to be reflected in neural activity 100 – 200ms post-stimulus onset over source estimated posterior regions of the right hemisphere (RH: temporo-parietal junction (TPJ)). Long lines induced a hemispheric asymmetry in processing (in favour of the RH) during this period that was absent in short lines. In experiment 4, bi-parietal tDCS (Left Anodal/Right Cathodal) induced a polarity-specific rightward shift in bias, highlighting the crucial role played by parietal cortex in the genesis of pseudoneglect. The opposite polarity (Left Cathodal/Right Anodal) did not induce a change in bias. The combined results from the four experiments of the current thesis provide converging evidence as to the crucial role played by the RH in the genesis of pseudoneglect and in the processing of visual input more generally. The reduction in pseudoneglect with decreased line length, increased time-on-task and healthy aging may be explained by a reduction in RH function, and hence contribution to task processing, induced by each of these modulations. I discuss how behavioural and neuroimaging studies of pseudoneglect (and its various modulators) can provide empirical data upon which accurate formal models of visuospatial attention networks may be based and further tested.