4 resultados para Virus diseases in animals

em Glasgow Theses Service


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Foot-and-mouth disease (FMD), a disease of cloven hooved animals caused by FMD virus (FMDV), is one of the most economically devastating diseases of livestock worldwide. The global burden of disease is borne largely by livestock-keepers in areas of Africa and Asia where the disease is endemic and where many people rely on livestock for their livelihoods and food-security. Yet, there are many gaps in our knowledge of the drivers of FMDV circulation in these settings. In East Africa, FMD epidemiology is complicated by the circulation of multiple FMDV serotypes (distinct antigenic variants) and by the presence of large populations of susceptible wildlife and domestic livestock. The African buffalo (Syncerus caffer) is the only wildlife species with consistent evidence of high levels of FMDV infection, and East Africa contains the largest population of this species globally. To inform FMD control in this region, key questions relate to heterogeneities in FMD prevalence and impacts in different livestock management systems and to the role of wildlife as a potential source of FMDV for livestock. To develop FMD control strategies and make best use of vaccine control options, serotype-specific patterns of circulation need to be characterised. In this study, the impacts and epidemiology of FMD were investigated across a range of traditional livestock-keeping systems in northern Tanzania, including pastoralist, agro-pastoralist and rural smallholder systems. Data were generated through field studies and laboratory analyses between 2010 and 2015. The study involved analysis of existing household survey data and generated serological data from cross-sectional livestock and buffalo samples and longitudinal cattle samples. Serological analyses included non-structural protein ELISAs, serotype-specific solid-phase competitive ELISAs, with optimisation to detect East African FMDV variants, and virus neutralisation testing. Risk factors for FMDV infection and outbreaks were investigated through analysis of cross-sectional serological data in conjunction with a case-control outbreak analysis. A novel Bayesian modeling approach was developed to infer serotype-specific infection history from serological data, and combined with virus isolation data from FMD outbreaks to characterise temporal and spatial patterns of serotype-specific infection. A high seroprevalence of FMD was detected in both northern Tanzanian livestock (69%, [66.5 - 71.4%] in cattle and 48.5%, [45.7-51.3%] in small ruminants) and in buffalo (80.9%, [74.7-86.1%]). Four different serotypes of FMDV (A, O, SAT1 and SAT2) were isolated from livestock. Up to three outbreaks per year were reported by households and active surveillance highlighted up to four serial outbreaks in the same herds within three years. Agro-pastoral and pastoral livestock keepers reported more frequent FMD outbreaks compared to smallholders. Households in all three management systems reported that FMD outbreaks caused significant impacts on milk production and sales, and on animals’ draught power, hence on crop production, with implications for food security and livelihoods. Risk factor analyses showed that older livestock were more likely to be seropositive for FMD (Odds Ratio [OR] 1.4 [1.4-1.5] per extra year) and that cattle (OR 3.3 [2.7-4.0]) were more likely than sheep and goats to be seropositive. Livestock managed by agro-pastoralists (OR 8.1 [2.8-23.6]) or pastoralists (OR 7.1 [2.9-17.6]) were more likely to be seropositive compared to those managed by smallholders. Larger herds (OR: 1.02 [1.01-1.03] per extra bovine) and those that recently acquired new livestock (OR: 5.57 [1.01 – 30.91]) had increased odds of suffering an FMD outbreak. Measures of potential contact with buffalo or with other FMD susceptible wildlife did not increase the likelihood of FMD in livestock in either the cross-sectional serological analysis or case-control outbreak analysis. The Bayesian model was validated to correctly infer from ELISA data the most recent serotype to infect cattle. Consistent with the lack of risk factors related to wildlife contact, temporal and spatial patterns of exposure to specific FMDV serotypes were not tightly linked in cattle and buffalo. In cattle, four serial waves of different FMDV serotypes that swept through southern Kenyan and northern Tanzanian livestock populations over a four-year period dominated infection patterns. In contrast, only two serotypes (SAT1 and SAT2) dominated in buffalo populations. Key conclusions are that FMD has a substantial impact in traditional livestock systems in East Africa. Wildlife does not currently appear to act as an important source of FMDV for East African livestock, and control efforts in the region should initially focus on livestock management and vaccination strategies. A novel modeling approach greatly facilitated the interpretation of serological data and may be a potent epidemiological tool in the African setting. There was a clear temporal pattern of FMDV antigenic dominance across northern Tanzania and southern Kenya. Longer-term research to investigate whether serotype-specific FMDV sweeps are truly predictable, and to shed light on FMD post-infection immunity in animals exposed to serial FMD infections is warranted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The under-reporting of cases of infectious diseases is a substantial impediment to the control and management of infectious diseases in both epidemic and endemic contexts. Information about infectious disease dynamics can be recovered from sequence data using time-varying coalescent approaches, and phylodynamic models have been developed in order to reconstruct demographic changes of the numbers of infected hosts through time. In this study I have demonstrated the general concordance between empirically observed epidemiological incidence data and viral demography inferred through analysis of foot-and-mouth disease virus VP1 coding sequences belonging to the CATHAY topotype over large temporal and spatial scales. However a more precise and robust relationship between the effective population size (

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Serosurveillance is a powerful tool fundamental to understanding infectious disease dynamics. The presence of virus neutralising antibody (VNAb) in sera is considered the best evidence of infection, or indeed vaccination, and the gold standard serological assay for their detection is the virus neutralisation test (VNT). However, VNTs are labour intensive, costly and time consuming. In addition, VNTs for the detection of antibodies to highly pathogenic viruses require the use of high containment facilities, restricting the application of these assays to the few laboratories with adequate facilities. As a result, robust serological data on such viruses are limited. In this thesis I develop novel VNTs for the detection of VNAb to two important, highly pathogenic, zoonotic viruses; rabies and Rift Valley fever virus (RVFV). The pseudotype-based neutralisation test developed in this study allows for the detection of rabies VNAb without the requirement for high containment facilities. This assay was utilised to investigate the presence of rabies VNAb in animals from a variety of ecological settings. In this thesis I present evidence of natural rabies infection in both domestic dogs and lions from rabies endemic settings. The assay was further used to investigate the kinetics of VNAb response to rabies vaccination in a cohort of free-roaming dogs. The RVFV neutralisation assay developed herein utilises a recombinant luciferase expressing RVFV, which allows for rapid, high-throughput serosurveillance of this important neglected pathogen. In this thesis I present evidence of RVFV infection in a variety of domestic and wildlife species from Northern Tanzania, in addition to the detection of low-level transmission of RVFV during interepidemic periods. Additionally, the investigation of a longitudinal cohort of domestic livestock also provided evidence of rapid waning of RVF VNAb following natural infection. Collectively, the serological data presented in this thesis are consistent with existing data in the literature generated using the gold standard VNTs. Increasing the availability of serological assays will allow the generation of robust serological data, which are imperative to enhancing our understanding of the complex, multi-host ecology of these two viruses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Endemic zoonotic diseases remain a serious but poorly recognised problem in affected communities in developing countries. Despite the overall burden of zoonoses on human and animal health, information about their impacts in endemic settings is lacking and most of these diseases are continuously being neglected. The non-specific clinical presentation of these diseases has been identified as a major challenge in their identification (even with good laboratory diagnosis), and control. The signs and symptoms in animals and humans respectively, are easily confused with other non-zoonotic diseases, leading to widespread misdiagnosis in areas where diagnostic capacity is limited. The communities that are mostly affected by these diseases live in close proximity with their animals which they depend on for livelihood, which further complicates the understanding of the epidemiology of zoonoses. This thesis reviewed the pattern of reporting of zoonotic pathogens that cause febrile illness in malaria endemic countries, and evaluates the recognition of animal associations among other risk factors in the transmission and management of zoonoses. The findings of the review chapter were further investigated through a laboratory study of risk factors for bovine leptospirosis, and exposure patterns of livestock coxiellosis in the subsequent chapters. A review was undertaken on 840 articles that were part of a bigger review of zoonotic pathogens that cause human fever. The review process involves three main steps: filtering and reference classification, identification of abstracts that describe risk factors, and data extraction and summary analysis of data. Abstracts of the 840 references were transferred into a Microsoft excel spread sheet, where several subsets of abstracts were generated using excel filters and text searches to classify the content of each abstract. Data was then extracted and summarised to describe geographical patterns of the pathogens reported, and determine the frequency animal related risk factors were considered among studies that investigated risk factors for zoonotic pathogen transmission. Subsequently, a seroprevalence study of bovine leptospirosis in northern Tanzania was undertaken in the second chapter of this thesis. The study involved screening of serum samples, which were obtained from an abattoir survey and cross-sectional study (Bacterial Zoonoses Project), for antibodies against Leptospira serovar Hardjo. The data were analysed using generalised linear mixed models (GLMMs), to identify risk factors for cattle infection. The final chapter was the analysis of Q fever data, which were also obtained from the Bacterial Zoonoses Project, to determine exposure patterns across livestock species using generalized linear mixed models (GLMMs). Leptospira spp. (10.8%, 90/840) and Rickettsia spp. (10.7%, 86/840) were identified as the most frequently reported zoonotic pathogens that cause febrile illness, while Rabies virus (0.4%, 3/840) and Francisella spp. (0.1%, 1/840) were least reported, across malaria endemic countries. The majority of the pathogens were reported in Asia, and the frequency of reporting seems to be higher in areas where outbreaks are mostly reported. It was also observed that animal related risk factors are not often considered among other risk factors for zoonotic pathogens that cause human fever in malaria endemic countries. The seroprevalence study indicated that Leptospira serovar Hardjo is widespread in cattle population in northern Tanzania, and animal husbandry systems and age are the two most important risk factors that influence seroprevalence. Cattle in the pastoral systems and adult cattle were significantly more likely to be seropositive compared to non-pastoral and young animals respectively, while there was no significant effect of cattle breed or sex. Exposure patterns of Coxiella burnetii appear different for each livestock species. While most risk factors were identified for goats (such as animal husbandry systems, age and sex) and sheep (animal husbandry systems and sex), there were none for cattle. In addition, there was no evidence of a significant influence of mixed livestock-keeping on animal coxiellosis. Zoonotic agents that cause human fever are common in developing countries. The role of animals in the transmission of zoonotic pathogens that cause febrile illness is not fully recognised and appreciated. Since Leptospira spp. and C. burnetii are among the most frequently reported pathogens that cause human fever across malaria endemic countries, and are also prevalent in livestock population, control and preventive measures that recognise animals as source of infection would be very important especially in livestock-keeping communities where people live in close proximity with their animals.