3 resultados para Variable response prediction

em Glasgow Theses Service


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vector-borne disease emergence in recent decades has been associated with different environmental drivers including changes in habitat, hosts and climate. Lyme borreliosis is among the most important vector-borne diseases in the Northern hemisphere and is an emerging disease in Scotland. Transmitted by Ixodid tick vectors between large numbers of wild vertebrate host species, Lyme borreliosis is caused by bacteria from the Borrelia burgdorferi sensu lato species group. Ecological studies can inform how environmental factors such as host abundance and community composition, habitat and landscape heterogeneity contribute to spatial and temporal variation in risk from B. burgdorferi s.l. In this thesis a range of approaches were used to investigate the effects of vertebrate host communities and individual host species as drivers of B. burgdorferi s.l. dynamics and its tick vector Ixodes ricinus. Host species differ in reservoir competence for B. burgdorferi s.l. and as hosts for ticks. Deer are incompetent transmission hosts for B. burgdorferi s.l. but are significant hosts of all life-stages of I. ricinus. Rodents and birds are important transmission hosts of B. burgdorferi s.l. and common hosts of immature life-stages of I. ricinus. In this thesis, surveys of woodland sites revealed variable effects of deer density on B. burgdorferi prevalence, from no effect (Chapter 2) to a possible ‘dilution’ effect resulting in lower prevalence at higher deer densities (Chapter 3). An invasive species in Scotland, the grey squirrel (Sciurus carolinensis), was found to host diverse genotypes of B. burgdorferi s.l. and may act as a spill-over host for strains maintained by native host species (Chapter 4). Habitat fragmentation may alter the dynamics of B. burgdorferi s.l. via effects on the host community and host movements. In this thesis, there was lack of persistence of the rodent associated genospecies of B. burgdorferi s.l. within a naturally fragmented landscape (Chapter 3). Rodent host biology, particularly population cycles and dispersal ability are likely to affect pathogen persistence and recolonization in fragmented habitats. Heterogeneity in disease dynamics can occur spatially and temporally due to differences in the host community, habitat and climatic factors. Higher numbers of I. ricinus nymphs, and a higher probability of detecting a nymph infected with B. burgdorferi s.l., were found in areas with warmer climates estimated by growing degree days (Chapter 2). The ground vegetation type associated with the highest number of I. ricinus nymphs varied between studies in this thesis (Chapter 2 & 3) and does not appear to be a reliable predictor across large areas. B. burgdorferi s.l. prevalence and genospecies composition was highly variable for the same sites sampled in subsequent years (Chapter 2). This suggests that dynamic variables such as reservoir host densities and deer should be measured as well as more static habitat and climatic factors to understand the drivers of B. burgdorferi s.l. infection in ticks. Heterogeneity in parasite loads amongst hosts is a common finding which has implications for disease ecology and management. Using a 17-year data set for tick infestations in a wild bird community in Scotland, different effects of age and sex on tick burdens were found among four species of passerine bird (Chapter 5). There were also different rates of decline in tick burdens among bird species in response to a long term decrease in questing tick pressure over the study. Species specific patterns may be driven by differences in behaviour and immunity and highlight the importance of comparative approaches. Combining whole genome sequencing (WGS) and population genetics approaches offers a novel approach to identify ecological drivers of pathogen populations. An initial analysis of WGS from B. burgdorferi s.s. isolates sampled 16 years apart suggests that there is a signal of measurable evolution (Chapter 6). This suggests demographic analyses may be applied to understand ecological and evolutionary processes of these bacteria. This work shows how host communities, habitat and climatic factors can affect the local transmission dynamics of B. burgdorferi s.l. and the potential risk of infection to humans. Spatial and temporal heterogeneity in pathogen dynamics poses challenges for the prediction of risk. New tools such as WGS of the pathogen (Chapter 6) and blood meal analysis techniques will add power to future studies on the ecology and evolution of B. burgdorferi s.l.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Body composition is affected by diseases, and affects responses to medical treatments, dosage of medicines, etc., while an abnormal body composition contributes to the causation of many chronic diseases. While we have reliable biochemical tests for certain nutritional parameters of body composition, such as iron or iodine status, and we have harnessed nuclear physics to estimate the body’s content of trace elements, the very basic quantification of body fat content and muscle mass remains highly problematic. Both body fat and muscle mass are vitally important, as they have opposing influences on chronic disease, but they have seldom been estimated as part of population health surveillance. Instead, most national surveys have merely reported BMI and waist, or sometimes the waist/hip ratio; these indices are convenient but do not have any specific biological meaning. Anthropometry offers a practical and inexpensive method for muscle and fat estimation in clinical and epidemiological settings; however, its use is imperfect due to many limitations, such as a shortage of reference data, misuse of terminology, unclear assumptions, and the absence of properly validated anthropometric equations. To date, anthropometric methods are not sensitive enough to detect muscle and fat loss. Aims: The aim of this thesis is to estimate Adipose/fat and muscle mass in health disease and during weight loss through; 1. evaluating and critiquing the literature, to identify the best-published prediction equations for adipose/fat and muscle mass estimation; 2. to derive and validate adipose tissue and muscle mass prediction equations; and 3.to evaluate the prediction equations along with anthropometric indices and the best equations retrieved from the literature in health, metabolic illness and during weight loss. Methods: a Systematic review using Cochrane Review method was used for reviewing muscle mass estimation papers that used MRI as the reference method. Fat mass estimation papers were critically reviewed. Mixed ethnic, age and body mass data that underwent whole body magnetic resonance imaging to quantify adipose tissue and muscle mass (dependent variable) and anthropometry (independent variable) were used in the derivation/validation analysis. Multiple regression and Bland-Altman plot were applied to evaluate the prediction equations. To determine how well the equations identify metabolic illness, English and Scottish health surveys were studied. Statistical analysis using multiple regression and binary logistic regression were applied to assess model fit and associations. Also, populations were divided into quintiles and relative risk was analysed. Finally, the prediction equations were evaluated by applying them to a pilot study of 10 subjects who underwent whole-body MRI, anthropometric measurements and muscle strength before and after weight loss to determine how well the equations identify adipose/fat mass and muscle mass change. Results: The estimation of fat mass has serious problems. Despite advances in technology and science, prediction equations for the estimation of fat mass depend on limited historical reference data and remain dependent upon assumptions that have not yet been properly validated for different population groups. Muscle mass does not have the same conceptual problems; however, its measurement is still problematic and reference data are scarce. The derivation and validation analysis in this thesis was satisfactory, compared to prediction equations in the literature they were similar or even better. Applying the prediction equations in metabolic illness and during weight loss presented an understanding on how well the equations identify metabolic illness showing significant associations with diabetes, hypertension, HbA1c and blood pressure. And moderate to high correlations with MRI-measured adipose tissue and muscle mass before and after weight loss. Conclusion: Adipose tissue mass and to an extent muscle mass can now be estimated for many purposes as population or groups means. However, these equations must not be used for assessing fatness and categorising individuals. Further exploration in different populations and health surveys would be valuable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Breast cancer, the most commonly diagnosed type of cancer in women, is a major cause of morbidity and mortality in the western world. Well-established risk factors of breast cancer are mostly related to women’s reproductive history, such as early menarche, late first pregnancy and late menopause. Survival rates have improved due to a combination of factors, including better health education, early detection with large-scale use of screening mammogram, improved surgical techniques, as well as widespread use of adjuvant therapy. At initial presentation, clinicopathological features of breast cancer such as age, nodal status, tumour size, tumour grade, and hormonal receptor status are considered to be the standard prognostic and predictive markers of patient survival, and are used to guide appropriate treatment strategies. Lymphovascular invasion (LBVI), including lymphatic (LVI) and blood (BVI) vessel invasion, has been reported to be prognostic and merit accurate evaluation, particularly in patients with node negative tumours who might benefit from adjuvant chemotherapy. There is a lack of standard assessment and agreement on distinguishing LVI from BVI despite the major challenges in the field. A systematic review of the literatures, examining methods of detection and the prognostic significance of LBVI, LVI and BVI, was carried out. The majority of studies used haematoxylin and eosin (H&E) and classical histochemistry to identify LVI and BVI. Only few recent studies used immunohistochemistry (IHC) staining of the endothelium lining lymphatic and blood vessels, and were able to show clear differences between LVI and BVI. The prognostic significance of LBVI and LVI was well-documented and strongly associated with aggressive features of breast tumours, while the prognostic value and the optimal detection method of BVI were unclear. Assessment and prognostic value of LBVI on H&E sections (LBVIH&E) was examined and compared to that of LVI and BVI detected using IHC with D2-40 for LVI (LVID2–40) and Factor VIII for BVI (BVIFVIII) in patients with breast cancer including node negative and triple negative patients (n=360). LBVIH&E, LVID2–40 and BVIFVIII were present in 102 (28%), 127 (35%) and 59 (16%) patients respectively. In node negative patients (206), LBVIH&E, LVID2–40 and BVIFVIII were present in 41 (20%), 53 (26%) and 21 (10%) respectively. In triple negative patients (102), LBVIH&E, LVID2–40 and BVIFVIII were present in 35 (29%), 36 (35%) and 14 (14%) respectively. LBVIH&E, LVID2–40 and BVIFVIII were all significantly associated with tumour recurrence in all cohorts. On multivariate survival analysis, only LVID2–40 and BVIFVIII were independent predictors of cancer specific survival (CSS) in the whole cohort (P=0.022 and P<0.001 respectively), node negative (P=0.008 and P=0.001 respectively) and triple negative patients (P=0.014 and P<0.001 respectively). Assessment of LVI and BVI by IHC, using D2-40 and Factor VIII, improves prediction of outcome in patients with node negative and triple negative breast cancer and was superior to the conventional detection method. Breast cancer is recognised as a complex molecular disease and histologically identical tumours may have highly variable outcomes, including different responses to therapy. Therefore, there is a compelling need for new prognostic and predictive markers helpful of selecting patients at risk and patients with aggressive diseases who might benefit from adjuvant and targeted therapy. It is increasingly recognised that the development and progression of human breast cancer is not only determined by genetically abnormal cells, but also dependent on complex interactions between malignant cells and the surrounding microenvironment. This has led to reconsider the features of tumour microenvironment as potential predictive and prognostic markers. Among these markers, tumour stroma percentage (TSP) and tumour budding, as well as local tumour inflammatory infiltrate have received recent attention. In particular, the local environment of cytokines, proteases, angiogenic and growth factors secreted by inflammatory cells and stromal fibroblasts has identified crucial roles in facilitating tumour growth, and metastasis of cancer cells through lymphatic and/or blood vessel invasion. This might help understand the underlying process promoting tumour invasion into these vessels. An increase in the proportion of tumour stroma and an increase in the dissociation of tumour cells have been associated with poorer survival in a number of solid tumours, including breast cancer. However, the interrelationship between these variables and other features of the tumour microenvironment in different subgroups of breast cancer are not clear. Also, whether their prognostic values are independent of other components of the tumour microenvironment have yet to be identified. Therefore, the relationship between TSP, clinicopathological characteristics and outcome in patients with invasive ductal breast cancer, in particular node negative and triple negative disease was examined in patients with invasive ductal breast cancer (n=361). The TSP was assessed on the haematoxylin and eosin-stained tissue sections. With a cut-off value of 50% TSP, patients with ≤50% stroma were classified as the low-TSP group and those with >50% stroma were classified as the high-TSP group. A total of 109 (30%) patients had high TSP. Patients with high TSP were old age (P=0.035), had involved lymph node (P=0.049), Her-2 positive tumours (P=0.029), low-grade peri-tumoural inflammatory infiltrate (P=0.034), low CD68+ macrophage infiltrate (P<0.001), low CD4+ (P=0.023) and low CD8+ T-lymphocytes infiltrate (P=0.017), tumour recurrence (P=0.015) and shorter CSS (P<0.001). In node negative patients (n=207), high TSP was associated with low CD68+ macrophage infiltrate (P=0.001), low CD4+ (P=0.040) and low CD8+ T-lymphocytes infiltrate (P=0.016) and shorter CSS (P=0.005). In triple negative patients (n=103), high TSP was associated with increased tumour size (P=0.017) high tumour grade (P=0.014), low CD8+ T-lymphocytes infiltrate (P=0.048) and shorter CSS (P=0.041). The 15-year cancer specific survival rate was 79% vs 21% in the low-TSP group vs high-TSP group. On multivariate survival analysis, a high TSP was associated with reduced CSS in the whole cohort (P=0.007), node negative patients (P=0.005) and those who received systemic adjuvant therapy (P=0.016), independent of other pathological characteristics including local host inflammatory responses. Therefore, a high TSP in invasive ductal breast cancer was associated with recurrence and poorer long-term survival. The inverse relation with the tumour inflammatory infiltrate highlights the importance of the amount of tumour stroma on immunological response in patients with invasive ductal breast cancer. Implementing this simple and reproducible parameter in routine pathological examination may help optimise risk stratification in patients with breast cancer. Similarly, the relationship between tumour budding, clinicopathological characteristics and outcome was examined in patients with invasive ductal breast cancer (n=474), using routine pathological sections. Tumour budding was associated with several adverse pathological characteristics, including positive lymph node (P=0.009), presence of LVI (P<0.001), and high TSP (P=0.001) and low-grade general peri-tumural inflammatory infiltrative (P=0.002). In node negative patients, a high tumour budding was associated with presence of LVI (P<0.001) and low-grade general peri-tumural inflammatory infiltrative (P=0.038). On multivariate survival analysis, tumour budding was associated with reduced CSS (P=0.001), independent of nodal status, tumour necrosis, CD8+ and CD138+ inflammatory cells infiltrate, LVI, BVI and TSP. Furthermore, tumour budding was independently associated with reduced CSS in node negative patients (P=0.004) and in those who have low TSP (P=0.003) and high-grade peri-tumoural inflammatory infiltrative (P=0.012). A high tumour budding was significantly associated with shorter CSS in luminal B and triple negative breast cancer subtypes (all P<0.001). Therefore, tumour budding was a significant predictor of poor survival in patients with invasive ductal breast cancer, independent of adverse pathological characteristics and components of tumour microenvironment. These results suggest that tumour budding may promote disease progression through a direct effect on local and distant invasion into lymph nodes and lymphatic vessels. Therefore, detection of tumour buds at the stroma invasive front might therefore represent a morphologic link between tumour progression, lymphatic invasion, spread of tumour cells to regional lymph nodes, and the establishment of metastatic dissemination. Given the potential importance of the tumour microenvironment, the characterisation of intracellular signalling pathways is important in the tumour microenvironment and is of considerable interest. One plausible signalling molecule that links tumour stroma, inflammatory cell infiltrate and tumour budding is the signal transducer and activator of transcription (STAT). The relationship between total and phosphorylated STAT1 (ph-STAT1), and total and ph-STAT3 tumour cell expression, components of tumour microenvironment and survival in patients with invasive ductal breast cancer was examined. IHC of total and ph-STAT1/STAT3 was performed on tissue microarray of 384 breast cancer specimens. Cellular STAT1 and cellular STAT3 expression at both cytoplasmic and nuclear locations were combined and identified as STAT1/STAT3 tumour cell expression. These results were then related to CSS and phenotypic features of the tumour and host. A high ph-STAT1 and a high ph-STAT3 tumour cell expression was associated with increased ER (P=0.001 and P<0.001 respectively) and PR (all P<0.05), reduced tumour grade (P=0.015 and P<0.001 respectively) and necrosis (all P=0.001). Ph-STAT1 was associated with increased general peri-tumoural inflammatory infiltrate (P=0.007) and ph-STAT3 was associated with lower CD4+ T-lymphocyte infiltrate (P=0.024). On multivariate survival analysis, including both ph-STAT1 and ph-STAT3 tumour cell expression, only high ph-STAT3 tumour cell expression was significantly associated with improved CSS (P=0.010) independent of other tumour and host-based factors. In patients with high necrosis grade, high ph-STAT3 tumour cell expression was independent predictor of improved CSS (P=0.021). Ph-STAT1 and ph-STAT3 were also significantly associated with improved cancer specific survival in luminal A and B subtypes. STAT1 and STAT3 tumour cell expression appeared to be an important determinant of favourable outcome in patients with invasive ductal breast cancer. The present results suggest that STATs may affect disease outcome through direct impact on tumour cells, and the surrounding microenvironment. The above observations of the present thesis point to the importance of the tumour microenvironment in promoting tumour budding, LVI and BVI. The observations from STATs work may suggest that an important driving mechanism for the above associations is the presence of tumour necrosis, probably secondary to hypoxia. Further work is needed to examine the interaction of other molecular pathways involved in the tumour microenvironment, such as HIF and NFkB in patients with invasive ductal breast cancer.