2 resultados para User Centred Design
em Glasgow Theses Service
Resumo:
The problem: Around 300 million people worldwide have asthma and prevalence is increasing. Support for optimal self-management can be effective in improving a range of outcomes and is cost effective, but is underutilised as a treatment strategy. Supporting optimum self-management using digital technology shows promise, but how best to do this is not clear. Aim: The purpose of this project was to explore the potential role of a digital intervention in promoting optimum self-management in adults with asthma. Methods: Following the MRC Guidance on the Development and Evaluation of Complex Interventions which advocates using theory, evidence, user testing and appropriate modelling and piloting, this project had 3 phases. Phase 1: Examination of the literature to inform phases 2 and 3, using systematic review methods and focussed literature searching. Phase 2: Developing the Living Well with Asthma website. A prototype (paper-based) version of the website was developed iteratively with input from a multidisciplinary expert panel, empirical evidence from the literature (from phase 1), and potential end users via focus groups (adults with asthma and practice nurses). Implementation and behaviour change theories informed this process. The paper-based designs were converted to the website through an iterative user centred process (think aloud studies with adults with asthma). Participants considered contents, layout, and navigation. Development was agile using feedback from the think aloud sessions immediately to inform design and subsequent think aloud sessions. Phase 3: A pilot randomised controlled trial over 12 weeks to evaluate the feasibility of a Phase 3 trial of Living Well with Asthma to support self-management. Primary outcomes were 1) recruitment & retention; 2) website use; 3) Asthma Control Questionnaire (ACQ) score change from baseline; 4) Mini Asthma Quality of Life (AQLQ) score change from baseline. Secondary outcomes were patient activation, adherence, lung function, fractional exhaled nitric oxide (FeNO), generic quality of life measure (EQ-5D), medication use, prescribing and health services contacts. Results: Phase1: Demonstrated that while digital interventions show promise, with some evidence of effectiveness in certain outcomes, participants were poorly characterised, telling us little about the reach of these interventions. The interventions themselves were poorly described making drawing definitive conclusions about what worked and what did not impossible. Phase 2: The literature indicated that important aspects to cover in any self-management intervention (digital or not) included: asthma action plans, regular health professional review, trigger avoidance, psychological functioning, self-monitoring, inhaler technique, and goal setting. The website asked users to aim to be symptom free. Key behaviours targeted to achieve this include: optimising medication use (including inhaler technique); attending primary care asthma reviews; using asthma action plans; increasing physical activity levels; and stopping smoking. The website had 11 sections, plus email reminders, which promoted these behaviours. Feedback during think aloud studies was mainly positive with most changes focussing on clarification of language, order of pages and usability issues mainly relating to navigation difficulties. Phase 3: To achieve our recruitment target 5383 potential participants were invited, leading to 51 participants randomised (25 to intervention group). Age range 16-78 years; 75% female; 28% from most deprived quintile. Nineteen (76%) of the intervention group used the website for an average of 23 minutes. Non-significant improvements in favour of the intervention group observed in the ACQ score (-0.36; 95% confidence interval: -0.96, 0.23; p=0.225), and mini-AQLQ scores (0.38; -0.13, 0.89; p=0.136). A significant improvement was observed in the activity limitation domain of the mini-AQLQ (0.60; 0.05 to 1.15; p = 0.034). Secondary outcomes showed increased patient activation and reduced reliance on reliever medication. There was no significant difference in the remaining secondary outcomes. There were no adverse events. Conclusion: Living Well with Asthma has been shown to be acceptable to potential end users, and has potential for effectiveness. This intervention merits further development, and subsequent evaluation in a Phase III full scale RCT.
Resumo:
Considerable interest in renewable energy has increased in recent years due to the concerns raised over the environmental impact of conventional energy sources and their price volatility. In particular, wind power has enjoyed a dramatic global growth in installed capacity over the past few decades. Nowadays, the advancement of wind turbine industry represents a challenge for several engineering areas, including materials science, computer science, aerodynamics, analytical design and analysis methods, testing and monitoring, and power electronics. In particular, the technological improvement of wind turbines is currently tied to the use of advanced design methodologies, allowing the designers to develop new and more efficient design concepts. Integrating mathematical optimization techniques into the multidisciplinary design of wind turbines constitutes a promising way to enhance the profitability of these devices. In the literature, wind turbine design optimization is typically performed deterministically. Deterministic optimizations do not consider any degree of randomness affecting the inputs of the system under consideration, and result, therefore, in an unique set of outputs. However, given the stochastic nature of the wind and the uncertainties associated, for instance, with wind turbine operating conditions or geometric tolerances, deterministically optimized designs may be inefficient. Therefore, one of the ways to further improve the design of modern wind turbines is to take into account the aforementioned sources of uncertainty in the optimization process, achieving robust configurations with minimal performance sensitivity to factors causing variability. The research work presented in this thesis deals with the development of a novel integrated multidisciplinary design framework for the robust aeroservoelastic design optimization of multi-megawatt horizontal axis wind turbine (HAWT) rotors, accounting for the stochastic variability related to the input variables. The design system is based on a multidisciplinary analysis module integrating several simulations tools needed to characterize the aeroservoelastic behavior of wind turbines, and determine their economical performance by means of the levelized cost of energy (LCOE). The reported design framework is portable and modular in that any of its analysis modules can be replaced with counterparts of user-selected fidelity. The presented technology is applied to the design of a 5-MW HAWT rotor to be used at sites of wind power density class from 3 to 7, where the mean wind speed at 50 m above the ground ranges from 6.4 to 11.9 m/s. Assuming the mean wind speed to vary stochastically in such range, the rotor design is optimized by minimizing the mean and standard deviation of the LCOE. Airfoil shapes, spanwise distributions of blade chord and twist, internal structural layup and rotor speed are optimized concurrently, subject to an extensive set of structural and aeroelastic constraints. The effectiveness of the multidisciplinary and robust design framework is demonstrated by showing that the probabilistically designed turbine achieves more favorable probabilistic performance than those of the initial baseline turbine and a turbine designed deterministically.