2 resultados para Unity,Mixed Reality,Extended Reality,Augmented Reality,Virtual Reality,Desgin pattern

em Glasgow Theses Service


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Televisions (TVs) and VR Head-Mounted Displays (VR HMDs) are used in shared and social spaces in the home. This thesis posits that these displays do not sufficiently reflect the collocated, social contexts in which they reside, nor do they sufficiently support shared experiences at-a-distance. This thesis explores how the role of TVs and VR HMDs can go beyond presenting a single entertainment experience, instead supporting social and shared use in both collocated and at-a-distance contexts. For collocated TV, this thesis demonstrates that the TV can be augmented to facilitate multi-user interaction, support shared and independent activities and multi-user use through multi-view display technology, and provide awareness of the multi-screen activity of those in the room, allowing the TV to reflect the social context in which it resides. For at-a-distance TV, existing smart TVs are shown to be capable of supporting synchronous at-a-distance activity, broadening the scope of media consumption beyond the four walls of the home. For VR HMDs, collocated proximate persons can be seamlessly brought into mixed reality VR experiences based on engagement, improving VR HMD usability. Applied to at-a-distance interactions, these shared mixed reality VR experiences can enable more immersive social experiences that approximate viewing together as if in person, compared to at-a-distance TV. Through an examination of TVs and VR HMDs, this thesis demonstrates that consumer display technology can better support users to interact, and share experiences and activities, with those they are close to.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unicellular bottom-heavy swimming microorganisms are usually denser than the fluid in which they swim. In shallow suspensions, the bottom heaviness results in a gravitational torque that orients the cells to swim vertically upwards in the absence of fluid flow. Swimming cells thus accumulate at the upper surface to form a concentrated layer of cells. When the cell concentration is high enough, the layer overturns to form bioconvection patterns. Thin concentrated plumes of cells descend rapidly and cells return to the upper surface in wide, slowly moving upwelling plumes. When there is fluid flow, a second viscous torque is exerted on the swimming cells. The balance between the local shear flow viscous and the gravitational torques determines the cells' swimming direction, (gyrotaxis). In this thesis, the wavelengths of bioconvection patterns are studied experimentally as well as theoretically as follow; First, in aquasystem it is rare to find one species lives individually and when they swim they can form complex patterns. Thus, a protocol for controlled experiments to mix two species of swimming algal cells of \emph{C. rienhardtii} and \emph{C. augustae} is systematically described and images of bioconvection patterns are captured. A method for analysing images using wavelets and extracting the local dominant wavelength in spatially varying patterns is developed. The variation of the patterns as a function of the total concentration and the relative concentration between two species is analysed. Second, the linear stability theory of bioconvection for a suspension of two mixed species is studied. The dispersion relationship is computed using Fourier modes in order to calculate the neutral curves as a function of wavenumbers $k$ and $m$. The neutral curves are plotted to compare the instability onset of the suspension of the two mixed species with the instability onset of each species individually. This study could help us to understand which species contributes the most in the process of pattern formation. Finally, predicting the most unstable wavelength was studied previously around a steady state equilibrium situation. Since assuming steady state equilibrium contradicts with reality, the pattern formation in a layer of finite depth of an evolving basic state is studied using the nonnormal modes approach. The nonnormal modes procedure identifies the optimal initial perturbation that can be obtained for a given time $t$ as well as a given set of parameters and wavenumber $k$. Then, we measure the size of the optimal perturbation as it grows with time considering a range of wavenumbers for the same set of parameters to be able to extract the most unstable wavelength.