4 resultados para Transurethral Resection of Prostate
em Glasgow Theses Service
Resumo:
No abstract available.
Resumo:
AMP-activated protein kinase (AMPK) is a key regulator of cell energy homeostasis. More recently, it has become apparent that AMPK regulates cell proliferation, migration and inflammation. Previous evidence has suggested that AMPK may influence proliferation and invasion by regulating the pro-proliferative mitogen-activated protein kinases (MAPKs). However, the mechanisms underlying this crosstalk between AMPK and MAPK signalling are not fully understood. As AMPK activation has been reported to have anti-proliferative effects, there has been increasing interest in AMPK activation as a therapeutic target for tumourigenesis. The aim of this study was to investigate whether AMPK activation influenced prostate cancer (PC) cell line proliferation, migration and signalling. Therefore, different PC cell lines were incubated with two structurally-unrelated molecules that activate AMPK by different mechanisms, AICAR and A769662. Both chemicals activated AMPK in a concentration- and time-dependent manner in PC3, DU145 and LNCaP cell lines. AMPK activity as assessed by AMPK activating phosphorylation as well as phosphorylation of the AMPK substrate ACC increased along with tumour severity in PC biopsies. Furthermore, both activators of AMPK decreased cell proliferation and migration in the androgen-independent PC cell lines PC3 and DU145. Inhibition of proliferation by A769662 was attenuated in AMPK α1-/- AMPK α2-/- knockout (KO) mouse embryonic fibroblasts (MEFs) compared to wild type (WT) MEFs, and the inhibitory effect on migration of AICAR lost significance in PC3 cells infected with adenoviruses expressing a dominant negative AMPK α mutant, indicating these effects are partially mediated by AMPK. Furthermore, long-term activation of AMPK was associated with inhibition of both the phosphatidylinositol 3’-kinase/protein kinase B (PI3K/Akt) signalling pathway in addition to the extracellular signal-regulated kinase 1/2 (ERK1/2) signalling pathway. Indeed, the actions of AMPK activators on PC cell line viability were mimicked by selective inhibitors of Akt and ERK1/2 pathways. In contrast to the effects of prolonged incubation with AMPK activators, short-term incubation with AMPK activators had no effect on epidermal growth factor (EGF)-stimulated ERK1/2 phosphorylation in PC cell lines. In addition, AMPK activation did not influence phosphorylation of the other MAPK family members p38 and JNK. Interestingly, both AICAR and A769662 decreased EGF-stimulated ERK5 phosphorylation in PC3, DU145 and LNCaP cells as assessed with an anti-phospho-ERK5 antibody. Further characterisation of this effect indicated that prior stimulation with the AMPK activators had no effect on ERK5 phosphorylation stimulated by transient transfection with a constitutively active ERK5 kinase (MEK5DD), which represents the only known canonical kinase for ERK5. Intriguingly, the pattern of EGF-stimulated ERK5 phosphorylation was distinct from that mediated by MEK5DD activation of ERK5. This finding indicates that AMPK activation inhibits EGF-stimulated ERK5 phosphorylation at a point at or above the level of MEK5, although why EGF and constitutively active MEK5 stimulate markedly different immunoreactive species recognised by the anti-phospho-ERK5 antibody requires further study. A769662 had a tendency to reduce EGF-stimulated ERK5 phosphorylation in WT MEFs, yet was without effect in MEFs lacking AMPK. These data indicate that AMPK may underlie the effect of A769662 to reduce EGF-stimulated ERK5 phosphorylation. Prolonged stimulation of PC cell lines with AICAR or A769662 inhibited EGF-stimulated Akt Ser473 phosphorylation, whereas only incubation with A769662 rapidly inhibited Akt phosphorylation. This difference in the actions of the different AMPK activators may suggest an AMPK-independent effect of A769662. Furthermore, AICAR increased phosphorylation of Akt in WT MEFs, an effect that was absent in MEFs lacking AMPK, indicating that this effect of AICAR may be AMPK-dependent. Taken together, the data presented in this study suggest that AMPK activators markedly inhibit proliferation and migration of PC cell lines, reduce EGF-stimulated ERK1/2 and Akt phosphorylation after prolonged incubation and rapidly inhibit ERK5 phosphorylation. Both AMPK activators exhibit a number of effects that are likely to be independent of AMPK in PC cell lines, although inhibition of ERK1/2, ERK5 and Akt may underlie the effects of AMPK activators on proliferation, viability and migration. Further studies are required to understand the crosstalk between those signalling pathways and their underlying significance in PC progression.
Resumo:
Chapter 1 While targeting kinases in oncology research has been explored extensively, targeting protein phosphatases is currently in its infancy. However, a number of pharmaceutical companies are currently looking to expand their research efforts in this area. PP2A has been shown to down-regulate ERK5, a mitogen-activated protein kinase (MAPK) that has been shown to be important in driving the invasive phenotype of prostate cancer. Fostriecin and its related structural analogues PD 113,270 and 113,271 have been shown to inhibit a mitotic entry checkpoint in cell growth through the potent and selective inhibition of protein phosphatases PP1, PP2A, and PP4 (IC50 of 45 μM, 1.5 nM, and 3 nM respectively). Fostriecin is one of the most selective protein phosphatase inhibitors disclosed to date with a 104 fold selectivity for PP2A/PP4 versus PP1. Unfortunately, fostriecin and its analogues are very unstable, and this instability has effectively prevented them from being used as effective therapeutic leads. The microcystins and nodularins on the other hand, exhibit significant inhibitory activity against PP1 and PP2A (IC50 = 26 pM and 1.8 nM respectively), but their high toxicity has prevented any therapeutic application. Truncation of the ADDA chain from these polypeptides completely attenuates PP inhibitory activity. Simpler analogues incorporating the N-acylated ADDA chain and D-Ala retain moderate activity against PP1 and PP2A (IC50 = 1.0 μM and 0.17 μM respectively). The generation of a new series of fostriecin analogues to further expand its structure-activity relationship is envisaged with a view to creating new more stable PP2A inhibitors. It was hoped that by incorporating some of the more stable structural features of ADDA into fostriecin that stability and activity could be reconciled. With that in mind a series of PP2A inhibitors were synthesised and biologically evaluated. Chapter 2 GPCRs are an important area of research and are the targets of a quarter of the drugs on the market (2005). As a result, GPCRs continue to be at the forefront of research in both small and large drug companies. However one of the difficulties in studying this diverse class of membrane proteins is their tendency to denature in aqueous solution. As a result there is a pressing need to develop new detergents to solubilise, stabilise and crystallise GPCRs in their native form for further study. Cholesterol analogues have been shown to be important for stabilising membrane proteins and preventing their thermal inactivation. In addition the β2-adrenergic receptor, a GPCR membrane protein, has been crystallised in the active state with two cholesterol molecules bound between the I, II, III and IV helices of the protein. This appears to represent a distinct cholesterol binding pocket on the membrane protein that is speculated to be conserved across up to 44% of the rhodopsin class of GPCRs. CHOBIMALT is a cholesterol-based detergent that has been shown to exhibit promising GPCR-stabilising properties. When benchmarked against other cholesterol based detergents it was found to be superior to all others tested except for cholesteryl hemisuccinate.1 CHOBIMALT has an aggregation number of roughly 200 and forms 210 ± 30 kDa micelles, which are significantly larger than those of most detergents used for biological systems which is likely due to the packing constraints associated with CHOBMALT’s large polar headgroup.2 As a result, CHOBIMALT is used mostly as an additive to other commercially available detergents in order to decrease micelle size. A branched dimaltoside motif is common in recently synthesised detergents by Chae and co-workers. These detergents have shown promising detergent properties, for example the maltose neopentyl glycol (MNG) detergent synthesised by Chae. This branched dimaltoside detergent was shown to be able to solubilise and stabilise the very labile light harvesting complex I (LHI) from Rhodopsin capsulatus in its active form for 20 days with little loss of protein conformation.3 A cholesterol-based detergent was envisaged that combines the cholesterol framework of CHOBIMALT but replaces its linear tetrasaccharide with a branched dimaltoside. This detergent would then be investigated to assess its ability to solubilise, stabilise and crystallise GPCR proteins. This cholesterol-based detergent (shown below) was eventually synthesised in 9 linear steps from cholesterol.
Resumo:
Colorectal cancer is the second most common cause of cancer death in the UK. It is accepted that both tumour and host factors are important determinants of disease progression and survival. While systemic and local inflammatory responses are increasingly recognized to be of particular importance the understanding of the mechanisms linking these important inflammatory processes remains unclear. This thesis examines the prognostic importance of measures of systemic and local inflammation and proposes a hypothesis for a link between tumour necrosis, systemic and local inflammatory responses in patients with colorectal cancer. Chapter 3 reports the comparison of the prognostic value of longitudinal measurements of systemic inflammation in patients undergoing curative resection of colorectal cancer. In Chapter 3 the results demonstrate that there was no significant overall change in either mGPS or NLR from pre- to post- operatively. This study highlighted the associations between pre- and post- operative mGPS and NLR and T-stage (p<0.001), TNM stage (p<0.005) and cancer-specific survival. The relationships between pre-operative measurements were examined using multivariate analysis. For pre-operative measurement both mGPS and NLR were associated with cancer-specific survival while when post-operative measures were examined only mGPS was specifically associated with cancer-specific survival (HR 4.81, CI 2.13-10.83, P<0.001). Chapter 4 examines the prognostic value of the Klintrup-Makinen scoring method and the existing limitations with regard to its clinical utility. An automated scoring method using commercially available image analysis software was developed and compared with manual scoring of tumour inflammatory infiltrates. This study demonstrated that both manual K-M scoring (p<0.001) and automated K-M scoring (p<0.05) had prognostic value in patients who had undergone potentially curative resection of colorectal cancer, and that the novel automated method may provide an objective method of assessment of tumour inflammatory infiltrates using routinely stained haematoxylin and eosin sections of tumour samples. In chapter 5 a hypothesis was proposed that Interleukin-6 may link tumour necrosis and systemic and local inflammatory responses in patients with colorectal cancer. This chapter examined the basis for this hypothesis, which is presented in figure 5.1. In addition, in chapter 5 the importance of this potential link is examined. In chapter 6, the hypothesis outlined in chapter 5 was examined in a cohort of patients who had undergone attempted curative resection of colorectal cancer. This study examined the inter-relationships between circulating mediators, in particular IL-6, tumour necrosis and systemic and local inflammatory responses. This results of this study demonstrated that IL-6 was associated with tumour necrosis (<0.001) and mGPS (<0.001) independent of T-stage. Thus adding weight to the hypothesis that elevated circulating concentrations of IL-6 may play a role in modulating both the systemic and local inflammatory responses in patients with cancer. Chapter 7 further develops the hypothesis that IL-6 signalling may be important in modulating systemic and local inflammatory responses in patients with colorectal cancer. Further, in chapter 7 the basis for the role of trans-signalling in this signaling pathway was examined. In this study, we reported that neither expression of the soluble IL-6 receptor or soluble gp130 were associated with systemic or local inflammatory responses. As a result the possible reasons for these findings were explored and future work suggested. A prospective database of patients undergoing attempted curative resection of colorectal cancer in Glasgow Royal Infirmary was used throughout this thesis. This database was created and is maintained regularly by successive research fellows at the Royal Infirmary. The work presented in this thesis highlights the importance of the host response in the form of systemic and local inflammation in patients with colorectal cancer and proposes a link between these responses and tumour necrosis. In addition, this work adds weight to the body of evidence suggesting that assessment of these host responses may improve stratification to treatment for patients with colorectal cancer. Further, this work proposes a mechanistic link, between tumour necrosis, systemic and local inflammatory responses through Interleukin-6, that merits further investigation.